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Abstract

We present Differometor, a new differentiable frequency domain interferometer simulator
implemented in Python using the JAX framework. Differometor’s implementation closely
follows the established Finesse simulator and offers functionality to simulate plane waves
in quasi-static, user-specified setup configurations including quantum noise calculations
and optomechanical effects. JAX’s GPU support and just-in-time compilation ensure
fast runtimes, while its automatic differentiation feature enables gradient-based optim-
izations that can easily support the large-scale digital discovery of novel gravitational
wave detectors. Differometor is verified against Finesse simulations, demonstrating close
agreement in strain sensitivity curves of large interferometer setups. Differometor rep-
resents a powerful tool for state-of-the-art AI-driven design of novel fundamental physics
experiments.
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Chapter 1

Introduction

Gravitational wave detectors, like the Advanced Laser Interferometer Gravitational-Wave
Observatory (aLIGO) [2], have opened a new window to observe the universe, independ-
ent of electromagnetic waves, neutrinos or massive particles, enabling a new era of multi-
messenger astrophysics [3]. Most of these detectors use laser light to sense spacetime
and to transform resulting light phase changes into intensity variations by making use of
Michelson interferometers [4].

Conventionally, such detectors are designed by computer-aided human intuition and ex-
perience guided by mathematical ingenuity. However, when considering the design of
new detectors as a combinatorial problem of choosing and placing certain components
with specific parameters in a special configuration, it becomes clear that the space of
potential designs is big enough to hold large numbers of setups that might have useful
properties but have never been explored by human researchers [5, 6].

Through their enormous popularity gain in recent years, AI methods now provide power-
ful tools to explore this vast search space through automated, digital discovery. To apply
these techniques, one requirement is the definition of a well-defined objective function.
In the case of gravitational wave detectors, this can be formulated as maximizing a de-
tector’s sensitivity to spacetime distortions [7]. To evaluate this objective function in
a way that doesn’t involve the physical realization of all possible detector blueprints, a
high-performance physical simulator is another core requirement.

In the field of gravitational wave detectors, multiple such simulators exist. A prominent
example is the frequency domain interferometer simulation software Finesse [8, 9, 10].
This Python and NumPy [11] based simulator was used in recent work on digital discovery
of gravitational wave detectors to evaluate optimized detector setups according to their
resulting strain sensitivity curves [7]. To do this using gradient-based optimization, the
simulator had to be executed millions of times which, despite the high performance of
the simulator, resulted in more than one million CPU hours of computational cost. This
presents a major bottleneck for large-scale AI-driven exploration tasks.
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Chapter 1 Introduction

To reduce this computational cost, the differentiability of the simulator is a crucial re-
quirement for fast gradient-based optimizations. Simulators like Finesse do not support
this and allow only numerical approximation of the gradients which requires multiple
simulation runs for each iteration. In addition, existing simulators don’t support GPU
execution and pose challenges in combining them with modern AI methods such as
neural-network-based surrogate models.

Addressing these limitations, we present Differometor, a new differentiable frequency
domain interferometer simulator specifically designed for the digital discovery of gravit-
ational wave detectors. Differometor closely follows the implementation of the Finesse
simulator and offers plane-wave propagation through quasi-static, user-specified setup
configurations including quantum noise calculations and optomechanical effects. Differo-
metor is implemented in Python using the JAX framework [12]. JAX provides GPU sup-
port, automatic differentiation and just-in-time (JIT) compilation, enabling fast runtimes
and gradient-based algorithms. Differometor makes efficient use of all of these features
and therefore presents a promising solution to current limitations of large-scale digital
discovery.

In chapter 2, we first discuss the necessary physical background of gravitational wave
and interferometer-based detectors and give an introduction of simulation techniques
that we use in Differometor. We then provide more details about recent work on digital
discovery of gravitational wave detectors and introduce Differometor. In chapter 3 we
describe the different subsystems of Differometor and benchmark it against Finesse
simulations, demonstrating performance advantages while delivering accurate results. In
chapter 4 we then apply Differometor to simple digital discovery optimizations with a
simplified aLIGO setup and demonstrate its scalability and advantages when running
gradient-based optimizations. We conclude in chapter 5 by outlining future development
plans.

2



Chapter 2

Background

This chapter provides an introduction to the relevant theory and existing work behind
interferometer simulators, as well as the broader goal of discovering new gravitational
wave detectors. In section 2.1 we briefly discuss sources of gravitational waves and their
effect on test masses. In section 2.2 we then describe interferometer techniques suitable
to detect these effects and give a short overview of existing gravitational wave detectors.
Section 2.3 introduces the necessary theory and conventions for interferometer simulation
and optical modeling, which will be needed for the implementation of our differentiable
interferometer simulator in chapter 3. We also list existing interferometer simulation
software and introduce Finesse, which is used as the template for our differentiable
simulator. Finally, in section 2.4, we list existing work in the field of AI for science, con-
centrate on one digital discovery approach for gravitational wave detectors and provide
a brief introduction to differentiable programming.

2.1 Gravitational Waves

In 1916, Albert Einstein proposed the existence of gravitational radiation as one of the
important consequences of his general theory of relativity [13]. The existence of this
radiation was then demonstrated by the discovery of the binary pulsar system PSR
B1913+16 by Hulse and Taylor [14] and the observation of its energy loss by Taylor and
Weisberg in 1982 [15]. On September 14, 2015, a century after Einstein’s fundamental
prediction, the Laser Interferometer Gravitational-Wave Observatory (LIGO) for the first
time directly observed GW150914, a gravitational wave signal generated by the merger
of a binary black hole [16].

As an approximation, the emission of gravitational waves can be expressed by defining
a gravitational analog to the quadrupole moment of electromagnetic radiation [17]. As
for electromagnetic waves, there are different classes of astrophysical systems which emit
gravitational waves across a broad frequency spectrum ranging over more than 14 orders
of magnitude from 10−10 Hz to more than 104 Hz [18]. Lower frequency ranges are
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Chapter 2 Background

populated with gravitational waves emitted from (super-)massive black hole inspiral and
mergers, e.g. from remnants of the earliest stars in the universe [19]. Extreme-mass-ratio
inspirals like compact objects captured by supermassive black holes emit gravitational
waves from around 10−4 Hz to 10−2 Hz. The higher frequency ranges are filled by waves
from compact binary inspirals and mergers (e.g. black holes or neutron stars from 10−4

to 5000 Hz) [20], supernovae explosions and pulsars (1 Hz to 1000 Hz) [21, 22] and
postmerger events (102 Hz to 103 Hz) [23].

For the purpose of this thesis, we constrain our understanding of gravitational waves
to their actions on test particles in some region of spacetime, as this will be important
to simulate their effects. We only sketch the derivation of these actions based on the
lecture notes by Blandford and Thorne [24] and refer to these notes for a more formal
treatment. Using Linearized Theory (idealizing gravitational waves as plane-fronted and
propagating through flat spacetime) and introducing coordinates with a small deviation
from flat spacetime, the corresponding metric can be written as

gαβ = ηαβ + hαβ, with |hαβ| ≪ 1 (2.1)

where ηαβ is the Minkowski metric and hαβ is the waves’ metric perturbation. Rewriting
this metric perturbation in Lorenz gauge and orienting the axes of the coordinates so
that the waves are planar and propagate in z-direction, one can derive a trace-reversed
metric perturbation as a solution to the flat-space wave equation. Specializing the gauge
further into the so-called transverse-traceless gauge or TT gauge reduces the independent
components of this metric perturbation solution to only two nonzero components hxx =
−hyy and hxy = +hyx. These two components are associated with two polarization states
for the waves (+ and ×) and are commonly written as

hTT
xx = −hTT

yy = h+(t− z), hTT
xy = +hTT

yx = h×(t− z). (2.2)

Now we consider a circular ring of test particles that floats freely in space and is static
before the gravitational waves pass. Choosing a local Lorentz frame with a reference
particle at the ring’s center, the waves produce a coordinate displacement δxj described
by the displacement vector ζj = xj + δxj between the reference particle and some other
particle with spatial coordinates xj . Inserting this displacement into the local-Lorentz-
frame variant of the equation of geodesic deviation, one can derive the gravitational-wave
tidal acceleration which moves particles back and forth and is described by

δxj =
1

2
hTT
jk xk. (2.3)
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Chapter 2 Background

This is analogous to the Newtonian tidal acceleration that causes the moon to raise tides
in Earth’s oceans. We can now insert the two components of the metric perturbation
and obtain the final displacements of the ring’s particles from the center:

δx =
1

2
h+x δy = −1

2
h+y,

δx =
1

2
h×y δy =

1

2
h×x.

(2.4)

This shows that the ring’s particles are undisturbed in the z-direction, but get deformed
into an ellipse, squashed along one axis by the same amount as it is stretched in the
other. The area of the ellipse is always preserved. Fig. 2.1 shows this effect on a ring of
particles for the + polarization.

y

x

y

x

y

x

y

x

y

x

Time

Figure 2.1: Effect of h+ gravitational waves propagating in the z-direction on a ring of particles.
While h+ > 0, the ring gets stretched along the x axis and squashed along the y axis. During
h+ < 0 the effect is in the reverse direction.

By defining a gravitational analog to the quadrupole moment of electromagnetic radiation
and calculating the radiated field from the temporal variation of this quadrupole moment,
it is possible to derive an approximation for the amplitude of gravitational waves emitted
by a binary system in which a pair of point masses orbit in a circle around their common
center of mass [17]:

|h| ≈ rS1rS2
r0R

. (2.5)

Here, R is the distance from the source to the observation point, r0 is the distance
between each object and the common center of mass and rSi is the Schwarzschild radius
rS = 2GM/c2 of the point mass i with mass M , gravitational constant G and speed of
light c. h is the actual measurable strain, that is the fractional amount by which e.g. the
distances of the particle ring in Fig. 2.1 get modulated. Using representative values such
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as two neutron stars in the Virgo cluster at R ≈ 15 Mpc with masses close to 1.4 times
the mass of the sun, which come so close that they almost touch each other at r0 = 20
km, we obtain an estimate of the dimensionless amplitude of the emitted gravitational
wave:

|h| ≈ 1× 10−21. (2.6)

Detecting this extremely small amplitude or strain presents a challenge that can only
be tackled by the most advanced interferometer techniques described in the next sec-
tion.

2.2 Interferometer Techniques for Gravitational Wave
Detection

Here, we will first introduce the basic detection principle of interferometric gravitational
wave detectors in section 2.2.1 and then give an overview of past, present and future
detectors in section 2.2.2.

2.2.1 Detector Principles

A gravitational wave detector measures the gravitational wave induced spacetime per-
turbations described in section 2.1. The most popular design to do this is to use laser light
to sense spacetime and transform resulting light phase changes into intensity variations
by making use of interference [4].

First, we consider the effect of a gravitational wave on an optical measurement of the
spatial distance. For this we mainly follow Jun Mizuno’s derivation from [25]. We
consider two free masses separated by length L. Light travelling between these two
masses has the null proper time

(ds)2 = gµνdx
µdxν = −(cdt)2 + gijdx

idxj = 0 (i, j = 1, 2, 3). (2.7)

Concentrating on gravitational waves with the h+ polarization described by equation 2.2,
we get:

(ds)2 = −(cdt)2 + (1 + h+) (dx)
2 + (1− h+) (dy)

2 + (dz)2 = 0. (2.8)

If we now look at light travelling between these two masses in y-direction, we insert
dx = dz = 0 and find:
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Chapter 2 Background

(
dy

dt

)2

=
c2

1− h+
. (2.9)

For our optical measurement, we are interested in the phase change that is induced by
the gravitational wave. We can calculate that phase change from the round trip time tr
of light with angular frequency ω0 between these two masses using ϕ(t) = ω0tr. We can
calculate the round trip time using

2L =

∫ L

0
dy −

∫ 0

l
dy =

∫ t

t−tr

dy

dt
dt

=

∫ t

t−tr

c√
1− h+(t)

dt = c

∫ t

t−tr

{
1 +

1

2
h+(t) +O

(
|h+|2

)}
dt

tr ≃
2L

c
− 1

2

∫ t

t−tr

h+(t)dt

≃ 2L

c
− 1

2

∫ t

t−2L/c
h+(t)dt ( for |h+| ≪ 1) .

(2.10)

The light along the x-axis experiences the same effect, but with a different sign, which
again shows the typical squeezing and stretching behavior already described in section
2.1. The phase change is thus given by

φ(t) = ω0tr ≃
2ω0L

c
± ω0

2

∫ t

t−2L/c
h+(t)dt. (2.11)

We now follow Bond et al. [26] and assume a gravitational wave signal given by:

h(t) = h0 cos (ωgt+ φg) . (2.12)

Here, h0 is the amplitude of the gravitational wave, calculated for example values in
equation 2.6. Looking for the phase change of a one-wave trip between the two masses,
we get

φ(t) = −ω0L

c
∓ ω0

2

∫ t

t−L/c
h(t)dt = −ω0L

c
∓ ω0h0

2

[
1

ωg
sin (ωgt+ φg)

]t
t−L/c

(2.13)

which we can simplify using trigonometric identities:

7



Chapter 2 Background

φ(t) = −ω0L

c
∓ ω0h0

ωg
cos

(
ωgt+ φg − ωg

L

2c

)
sin

(
ωg

L

2c

)
. (2.14)

This result will be used in section 2.3.3 to simulate the effect of a gravitational wave. We
can transform such phase changes into intensity variation by making use of two coherent
light waves because the amplitude of their superposition depends on their relative phase.
This interference of light has been common knowledge since a couple of centuries and is
manifested in a multitude of interferometers of various designs.

Laser

ETMY

ETMXBS

Detector

Lx

Ly

Figure 2.2: A Michelson interferometer with a central beam splitter and one end test mass mirror
on each arm.

The most popular one for gravitational wave detection is the Michelson interferometer
shown in Fig. 2.2 [26]. In this design, a central beam splitter is used to split the
laser beam into two waves with equal amplitudes and send them into two perpendicular
interferometer arms with lengths Lx and Ly. Two highly reflective mirrors at the end of
these arms, often referred to as end test masses (ETM), reflect the two beams back to the
beam splitter, where they recombine and are detected by a photodetector in the signal
port. The lengths of the interferometer arms are tuned so that the optical paths of the
two light beams are equal to each other and that the beams interfere destructively at the
photodetector [4]. This operation mode is called dark fringe as it leaves the photodetector
unilluminated. If one of the end test masses then gets displaced by a gravitational wave,
the difference in arm lengths is non-zero: δL = Lx − Ly ̸= 0. Writing the laser beam
before the beam splitter as
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Elaser (t) = E0 cos (ω0t) (2.15)

and the reflected beams in the two perpendicular arms as

Ex,y(t) = −E0√
2
cos (ω0t− 2ω0Lx,y/c) , (2.16)

then the output light field at the photodetector can be written as:

Edark (t) =
Eout

x (t)− Eout
y (t)

√
2

= E0 sin
ω0δL

c
sin (ω0t− ω0 [Lx + Ly] /c) . (2.17)

We can calculate the resulting intensities by averaging the field amplitudes over many
oscillation periods via I ∝ E2:

Idark (δL/λ0) =
I0
2

(
1− cos 4π

δL

λ0

)
. (2.18)

The Michelson interferometer tuned to operate at the dark fringe therefore has a sensit-
ivity proportional to (δL/λ0)

2. For small differential displacements δL ≪ λ0, this yields
extremely weak light power on the photodetector. Therefore, interferometers are usually
slightly detuned from the dark fringe in order to ensure a linear instead of quadratic
dependence on the displacement.

To detect the extremely small spacetime perturbations as approximated in equation 2.6,
the most important property of a gravitational wave detector is its sensitivity expressed
by the noise-to-signal ratio (NSR) which measures the minimal measurable amplitude of
a gravitational wave [26]:

NSR =

√
SP

Tgw→P
. (2.19)

Here, Tgw→P is the transfer function from a gravitational wave signal to the output
photodiode. It outputs Watts per unit strain h at a certain signal frequency ωgw and
describes how the signal gets transformed when passing through the interferometer to
the detector. The calculation of this transfer function via so-called coupling matrices is
described in section 2.3.2. SP is the power spectral density (PSD) of the noise present
in the detector, measured in watts per unit frequency. The sensitivity of a gravitational
wave detector is limited by different noise terms [27].
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Chapter 2 Background

Thermal noise includes e.g. thermal motion of the test mass suspensions as well as
Brownian motion of the optic dielectric coatings. Seismic noise describes ground motion
induced movement of the test masses and is mitigated by suspending the test masses
from quadruple pendulum chains. Newtonian noise stems from gravitational coupling
of the test masses to fluctuating mass density fields, e.g. produced by seismicity and
atmospheric pressure fluctuations. In addition, there is laser frequency and intensity
noise, different control noises, residual gas noise and others.

Once classical noise sources have been mitigated, quantum noise imposes a fundamental
limit to the interferometer sensitivity [28, 29, 30, 31]. This quantum noise appears in
two forms, shot noise and radiation pressure noise. Shot noise dominates the high-
frequency region of the sensitivity spectrum and arises from statistical fluctuations in
the arrival time of photons at the detector. Radiation pressure noise dominates at low
frequencies as it is a displacement noise from amplitude fluctuations of the light field
in the interferometer arms, which generate a motion of the optics. The inset in Fig.
2.3 shows simulated strain sensitivity curves which contain these two quantum noise
types.

Shot noise is usually reduced by two techniques, an increase in laser power or the use of
squeezed vacuum injected into the dark port of the interferometer [27]. Squeezing vacuum
noise is the process of decreasing the uncertainty in either phase or amplitude quadrature
of a light field. Due to the uncertainty principle, squeezing the phase quadrature to
reduce shot noise leads to anti-squeezing in the amplitude quadrature which in turn raises
radiation pressure noise. However, a broadband reduction of both types of quantum noise
can be achieved by frequency dependent squeezing in which low frequency vacuum noise
is amplitude squeezed to reduce radiation pressure while high frequency noise is phase
squeezed to reduce shot noise [32].

More details about shot noise and radiation pressure noise and how to simulate them is
described in sections 2.3.5 and 2.3.6.

10
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Laser PRM

SRM

Squeezer

ITMY

ETMY

ITMX ETMXBS

Detector

4 km

4 
km

with shot noise
with shot and radiation pressure noise

Frequency [Hz]
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in
 se
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vi
ty

 [1
/  
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 ]

Figure 2.3: Simplified optical layout of the aLIGO observatories that will be used in optimizations
in later sections. These detectors are dual-recycled, Fabry-Pérot, Michelson interferometers with
suspended test masses and a squeezed vacuum source to reduce quantum noise. Inset: The
simulated strain sensitivity for this setup, once with shot noise only and once taking into account
the radiation pressure with the suspended mirrors. Shot noise dominates the high frequencies
while radiation pressure noise dominates the low frequency regions. The sensitivity curves were
calculated using Finesse and the layout was taken from [10].

2.2.2 Existing Gravitational Wave Detectors

The first generation of initial detectors in the early 2000s (TAMA300 [33], GEO600
[34], Virgo [35], LIGO [36]) served as a proof-of-concept for second generation detectors
(aLIGO [2] and Advanced Virgo [37]) which detected the first gravitational wave in
2015 [16]. Future third generation detectors include the Cosmic Explorer [38, 39] and
the Einstein Telescope [40]. The NEMO detector [41] is supposed to complement these
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detectors at higher frequencies while the Laser Interferometer Space Antenna (LISA)
[42] and atom interferometers like the MAGIS-km [43] fill lower and medium frequency
ranges [44].

In section 4.2 we will run optimizations based on a simplified design of the aLIGO detector
[10], shown in Fig. 2.3. This detector consists of two laser interferometers around 3000
km apart and is currently conducting its fourth observation run [45]. The core of the two
observatories are dual-recycled, Fabry-Pérot, Michelson interferometers where the arms
are cavities of 4 km length. The arm cavities enhance the light power circulating in the
interferometer arms by constructive interference between the input test masses (ITMs)
and end test masses (ETMs) while not increasing the light power in the beam splitter
substrate. They also result in an increase of sensitivity for gravitational waves with a
frequency within the linewidth of the cavities, but also in a decrease in sensitivity for
signals outside their linewidth [46].

Dual-recycling refers to one power-recycling mirror at the input between laser and beam
splitter and one signal-recycling mirror at the output port of the beam splitter. Power
recycling was first proposed in 1983 [47, 48] and further increases the amount of light
circulating within the interferometer while also reducing beam jitter and laser frequency
noise. The disadvantage is an increase in laser power in the beam splitter substrate
which can lead to higher-optical loss by causing thermal distortions. Signal recycling
was first suggested in 1988 [49] and additionally increases the power detected on the
photodetector while also increasing the bandwith of the detector for the signal sidebands.
Here, the bandwidth refers to the frequency at which the differential arm frequency
response begins falling off.

Fig. 2.3 also shows the optics suspensions of the cavity mirrors affecting the optomech-
anics of the system which is explained in more detail in section 2.3.6. aLIGO also makes
use of squeezers to reduce quantum noise as explained in section 2.2.1. Not shown in
Fig. 2.3 is the filter cavity at the squeezer which enables aLIGO to perform frequency
dependent squeezing. Also not shown in Fig. 2.3 are the input mode cleaner used for sta-
bilizing the laser frequency, intensity and spatial mode content, the output mode cleaner
used for intensifying only the main interferometer gravitational wave signal, the seismic
isolation systems, the filter cavity that enables frequency-dependent squeezing and the
data acquisition systems. We refer to [45] for a full review of aLIGO components.

Similar to the simulated sensitivity curve in Fig. 2.3, the aLIGO detector targeted a
detection band from 10 Hz to 7000 Hz and had a design sensitivity reaching 10−23/

√
Hz

in the most sensitive frequency ranges.
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2.3 Interferometer Simulation and Optical Modeling

In this section, we will provide the theoretical background necessary to implement the
differentiable interferometer simulator in the next chapter. First, we define light fields,
describe their interaction with interferometer components and introduce common con-
ventions in interferometer simulation. In further subsections, light field modulation and
readout techniques are described and an introduction to the sideband formulation of
quantum noise and to optomechanics is given. For this, we mainly follow the reviews by
Bond et al. [26] and by Danilishin et. al. [4] as well as the manuals of Finesse 2 [9] and
Finesse 3 [10].

2.3.1 Light Fields

Starting from Maxwell’s equations, we can formulate the homogeneous wave equation
whose solutions are plane waves [50]. For our purposes we can ignore the polarization
and focus on the electric component expressed as scalar waves. Using complex notation
and assuming propagation through vacuum, these can be described as

E = E0 exp(i(ωt− kD)) = E0 exp(i(ωt+ φ)). (2.20)

Here, E0 is the light field amplitude, ω = 2πf is the angular frequency of the wave, t is
time, k = ω/c is the wave number in vacuum, c is the speed of light, D is the distance
that the wave travels and φ a constant phase term.

We are interested in implementing a frequency domain interferometer simulator and can
assume that the simulated interferometer is in a steady state with solutions independent
of time. In this case, equation 2.20 can be simplified to

E = E0 exp(−ikD) = E0 exp(iφ). (2.21)

The next section explains how these light fields interact with interferometer components
such as mirrors, beam splitters and the spaces in between.

2.3.2 Coupling Matrices of Optical Components

Again starting from Maxwell’s equations, we can formulate continuity conditions for
electromagnetic waves at interfaces. From these, we can derive the laws of reflection and
refraction together with the Fresnel equations and amplitude coefficients for reflection
and transmission r and t, with 0 ≤ r2, t2 ≤ 1. For a detailed derivation, we refer to the
introductory book by Nolting [50].
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For our purposes we use the coefficients r and t to describe the interaction of light fields
with mirrors and beam splitters as main interferometer components. For that, we make
use of a simplifying theoretical model of these components, viewing them as single, flat,
symmetric optical surfaces while realistic models would include two specifically shaped
optical surfaces with a substrate in between. In short, we describe the interactions
between light fields and interferometer components using linear coupling coefficients.
This approach already allows us to simulate simplified interferometer layouts while it is
in principle expandable with more complex and realistic phenomena.

A mirror is a linear system with two input and two output ports as shown in Fig. 2.4.
The field amplitudes of the light fields at the output ports can be written as

E2 = rE1 + itE3

E4 = rE3 + itE1
(2.22)

or in matrix form as

(
E2

E4

)
=

(
it r
r it

)(
E3

E1

)
. (2.23)

optical axis

E1

E2 E3

E4

p1

p2 p3

p4

r, t, l

Figure 2.4: A mirror component with two input (p1, p3) and two output ports (p2, p4), coefficients
for reflection and transmission r, t and loss l.

This is commonly called the coupling matrix for field amplitudes at a mirror. This
definition also includes a potential loss by defining loss 0 < L < 1, reflectivity R = r2

and transmissivity T = t2 and constraining these three parameters through the relation
L+R+ T = 1.

The π/2 phase shift upon transmission follows a common convention for the analysis
of modern optical systems. For a detailed explanation of this convention, we refer to
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section 2.4 of the review by Bond et al. [26]. In short, the absolute phase change upon
interaction with an optical surface depends on the applied coating and is generally not
known. However, because the positions of optical components are not known to sub-
wavelength precision, this absolute phase change is typically not of interest. Instead,
the relative phase relation between incoming and outgoing beams is of importance and
constrained by the following expression derived from the fundamental principle of power
conservation:

1

2
(φr1 + φr2)− φt = (2N + 1)

π

2
. (2.24)

Here, φr1 and φr2 are the phase changes upon reflection on both sides of the mirror and
φt is the phase change upon transmission. N is an integer that can be chosen arbitrarily
and will be set to N = −1 throughout this text. This constraint on the relative phase
relation allows for the choice of any set of phase changes on reflection and transmission
that fulfils it. Thus, the convention is to choose ϕt = π/2 and φr1 = φr2 = φr = 0 which
is convenient as it allows the definition of mirrors and beam splitters without a front and
back face.

Similar to the coupling matrix for a mirror, we then define the coupling matrix for a
beam splitter with four input and four output ports (see Fig. 2.5) as


E2

E4

E6

E8

 =


0 r it 0
r 0 0 it
it 0 0 r
0 it r 0




E1

E3

E5

E7

 . (2.25)
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optical axis

optical axis

E1

E2

E4 E3

E6

E5

E7 E8

p1

p2

p6

p5

p4 p3

p7 p8

r, t, l, α

Figure 2.5: A beam splitter component with 4 input and 4 output ports, coefficients for reflection
and transmission r, t, loss l and angle of incidence α.

Furthermore, when freely propagating through a medium with refraction index n and
distance D, a light field accumulates an additional phase. According to equation 2.21,
this additional phase can be expressed as knD where the wave number kn is defined as
ω/vn with ω as angular frequency and vn as phase velocity of the wave in a material
with refractive index n. The refractive index is defined as n = c/vn, which means we
can rewrite the accumulated phase over distance D as knD with k as the wave number
in vacuum [50]. Now we can formulate the coupling matrix for light field propagation in
a material with refractive index n over distance D as

(
E2

E4

)
=

(
exp(−iknD) 0

0 exp(−iknD)

)(
E3

E1

)
. (2.26)

In order to combine coupling matrices to describe an optical system with multiple com-
ponents, there are two commonly used methods. The first method is to construct an
interferometer matrix with one equation for each light field amplitude. For example, we
can rewrite the coupling matrix for a mirror from equation 2.23 as a full interferometer
matrix
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
1 0 0 0
−r 1 −it 0
0 0 1 0
−it 0 −r 1




E1

E2

E3

E4

 =


E1

0
E3

0

 = Minterferometer Esol = Einput (2.27)

where Einput has non-zero values for any input fields and Esol is the solution vector that
provides information about all light field amplitudes in the entire system after solving. If
we have multiple components, we combine them into an interferometer matrix by placing
their matrices along the diagonal and connecting them with off-diagonal space connector
entries. A cavity setup with two mirrors and a space in between as shown in Fig. 2.10
would then result in the interferometer matrix



1 0 0 0 0 0 0 0
−r1 1 −it1 0 0 0 0 0
0 0 1 0 0 −e−iknD 0 0

−it1 0 −r1 1 0 0 0 0
0 0 0 −e−iknD 1 0 0 0
0 0 0 0 −r2 1 −it2 0
0 0 0 0 0 0 1 0
0 0 0 0 −it2 0 −r2 1





E1

E2

E3

E4

E5

E6

E7

E8


=



E1i

0
0
0
0
0
E7i

0


(2.28)

where E1i and E7i are potential input fields. Note that the interferometer matrices
for mirror 1 and mirror 2 are simply inserted unchanged and connected via the space
connector entries.

optical axis

E1

E2 E3

E4
p1

p2 p3

p4

r , t  , l

E5

E6 E7

E8
p1

p2 p3

p4

r , t  , l

D, n

1 1 1 2 2 2

Figure 2.6: A cavity setup with 2 mirrors and a space in between. It is fully described by the
interferometer matrix in equation 2.28. E1 and E7 are marked as possible inputs to the setup.

The second method to describe a full system of coupling matrices follows a more compact
and sequential approach [51]. It requires reordering the coupling matrices so that light
fields on the same side of the optical component are also on the same side of the system
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of equations. The coupling matrix for a mirror (equation 2.23) would then be rewritten
into

(
E1

E2

)
=

i

t

(
−1 r
−r r2 + t2

)(
E4

E3

)
. (2.29)

Following this approach one could then express a cavity setup by multiplying the re-
spective component matrices:

Mcav = Mmirror 1 ×Mspace ×Mmirror 2. (2.30)

This yields another compact 2x2 matrix that can be used for the calculation of the output
fields. The disadvantage of this method is the lack of information about the light fields
within the optical system, e.g. at the right ports of mirror 1 and left ports of mirror 2.
In order to constrain the light power impinging on component ports, one would need this
information which makes this method only applicable for certain kinds of analysis.

Storing the distance D from the space coupling matrix in equation 2.26 directly as a
floating point number leads to unacceptable rounding errors. On the one hand there are
parameters (e.g. the resonance condition inside an optical cavity) which depend on the
distance modulo the laser wavelength. Thus, these parameters often depend on length
differences on the order of 1 µm. On the other hand, properties like the finesse of a
cavity or the propagation of sideband fields depend on the absolute lengths. Dealing
with such different magnitude requirements by storing the distance as a floating point
number often leads to inaccuracies. A common convention to cope with this difficulty
is to split distances into a macroscopic length L defined as the multiple of a constant
default wavelength λ0 and a microscopic tuning T so that D = L + T [52]. λ0 can
thereby be understood as the laser wavelength in vacuum or has to be chosen arbitrarily
if multiple light fields with different frequencies are simulated. A phase difference caused
by an additional distance D is given by

φ = −kD. (2.31)

With the default wavelength λ0 we define ω0 = 2πc/λ0 and k0 = ω0/c. We can then
express any given wavelength ω relative to the default wavelength ω0 by defining ω =
ω0 +∆ω and the wavenumber as k = k0 +∆k. Thus, equation 2.31 becomes

−φ = kD =
ω0L

c
+

∆ωL

c
+

ωT

c
(2.32)
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where the first term is always a multiple of 2π as L is a multiple of λ0. Thus, the first
term is equivalent to zero. Now we can define the dimensionless tuning:

ϕ =
ω0T

c
. (2.33)

Equation 2.32 can then be rewritten as

−φ = kD =
∆ωL

c
+ ϕ

ω

ω0
. (2.34)

The tuning ϕ can then be treated as a parameter of optical components and represents
their microscopic displacement. The length L on the other hand is the macroscopic
length of a space between components.

With this new definition of macroscopic length and microscopic tuning, the coupling
matrices have to get updated. Reflected and transmitted light fields now get affected
by the tuning distance, so there is an additional phase accumulation described by the
second term in equation 2.34. For reflected light fields, the tuning induced phase shifts
are

φr1 = 2ϕn1
ω

ω0
φr2 = −2ϕn2

ω

ω0
. (2.35)

The refractive index comes from defining the tuning with c as vacuum phase velocity
while in general there could be materials with different refractive indices on both sides.
With N = −1, equation 2.24 then gives the tuning induced phase shift for transmitted
light, resulting in

φt =
π

2
+

φr1 + φr2

2
(2.36)

Fig. 2.7 shows a tuned mirror. Because of the additional phase accumulation the mirror’s
coupling matrix (equation 2.23) has to be rewritten as

(
E2

E4

)
=

(
t eiφt r eiφr1

r eiφr2 t eiφt

)(
E3

E1

)
. (2.37)
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optical axis

n1 n2
T

Figure 2.7: A mirror with tuning T . The dashed and transparent mirror marks the original mirror
position while the solid mirror marks the position after tuning. Both sides can have different
refractive indices n1 and n2. Dashed red arrows mark the original light paths, solid red arrows
the new light paths, which are shorter for beams from the left and longer for beams from the
right, resulting in phase differences for the impinging light fields.

The beam splitter coupling matrix has to be updated in a similar way. A tuned beam
splitter is shown in Fig. 2.8. The only difference to a tuned mirror is an additional
parameter α specifying the tilt angle relative to the incoming beams on the left side of
the beam splitter. In this case, the tuning induced phase shifts for reflected light fields
are

φr1 = 2ϕn1 cosα
ω

ω0
φr2 = −2ϕn2 cosβ

ω

ω0
. (2.38)

where β is the tilt angle on the right side of the beam splitter, which can be calculated
via Snell’s law:

n1 sinα = n2 sinβ. (2.39)
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n
1
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2

T

n
1

n
2
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α α

β

Figure 2.8: A beam splitter with tuning T . The dashed, transparent beam splitter marks the
original position, the solid beam splitter the position after tuning. Both sides can have different
refractive indices n1 and n2. Dashed red arrows mark the original light paths, solid red arrows
the new light paths, which are shorter for beams from the left and longer for beams from the
right, resulting in phase differences for the impinging light fields.

For the phase change upon transmission, the shift is equivalent to equation 2.36. With
this, reflectivity and transmissivity entries of the coupling matrix for the beam splitter
have to be updated in the same way as for the mirror coupling matrix:


E2

E4

E6

E8

 =


0 r eiφr1 t eiφt 0

r eiφr1 0 0 t eiφt

t eiφt 0 0 r eiφr2

0 t eiφt r eiφr2 0




E1

E3

E5

E7

 . (2.40)

For the propagation through a space with refractive index n and macroscopic length
L, there is the phase factor described by the first term in equation 2.34. The updated
coupling matrix for such a space can be written as

(
E2

E4

)
=

(
e−i∆ω

c
nL 0

0 e−i∆ω
c

nL

)(
E3

E1

)
. (2.41)

Combining coupling matrices of different components of an optical system to form an
interferometer matrix (e.g. equation 2.28) and then solving the resulting system of equa-
tions for the light fields at all component ports enables the propagation of laser light, i.e.
the carrier field, through the system. The same mechanism can be used to also propagate
signal sidebands which will be introduced in the next section.
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2.3.3 Light Field Modulation

In interferometer simulation, one usually deals with three different types of light fields.
First, there is the laser itself, for example with a frequency of f ≈ 2.8 · 1014 Hz. Then
there are so-called radio frequency (RF) sidebands often used for optical readout purposes
and with frequencies (offset to the laser frequency) around f ≈ 1 · 106 to 150 · 106 Hz.
The signal sidebands carry the signal to be measured (e.g. a gravitational wave signal
or noise) and have frequencies of 1− 10000 Hz.

Sidebands are for example generated by light field modulation. In the frequency domain,
such sidebands are just new light fields, which are shifted in frequency with respect to
the carrier field. Light power is then divided between the carrier field and the different
sideband fields. Here we describe the computation of sideband fields created by phase
modulation which will later be used to simulate signal sidebands from gravitational waves
and optomechanical effects.

For phase modulation and modulation by a gravitational wave, we follow Bond et al. [46]
and start with a light field defined by equation 2.20. We then apply a phase modulation
and get:

E = E0 exp(i(ω0t+ φ0 + ϕ(t))), (2.42)

where ω0 and φ0 are the angular frequency and the phase of the carrier and ϕ(t) is the
modulation signal defined by:

ϕ(t) = m cos (Ωt+ φs) . (2.43)

Here, m is the so-called modulation index and φs the phase of the modulation signal.
We can now expand this modulated light field as a series of Bessel functions of the first
kind, Jk(m) to make it explicit that this phase modulation actually creates an infinite
number of upper (k > 0) and lower (k < 0) sidebands around the carrier (k = 0):

exp(im cosφ) =

∞∑
k=−∞

ikJk(m) exp(ikφ) (2.44)

Bessel functions of the first kind are defined as:

Jk(m) =
(m
2

)k ∞∑
n=0

(
−m2

4

)n
n!(k + n)!

. (2.45)
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In order to propagate the resulting sidebands through the optical system, we have to
limit them to a reasonable number. Usually the signal amplitude, that is the modulation
index m, is assumed to be much smaller than 1. With that we can approximate the
Bessel functions as

Jk(m) =
1

k!

(m
2

)k
+O

(
mk+2

)
(2.46)

and

J−k(m) = (−1)kJk(m) (2.47)

as they decrease rapidly with increasing k. This also means that in this case, we only
have to take a few sidebands into account. For the carrier at k = 0 we approximate
equation 2.45 up to the second order in m resulting in

J0(m) = 1− m2

4
. (2.48)

For the sidebands at k = ±1 we use equation 2.46 and obtain

J−1(m) = −m

2
J1(m) =

m

2
. (2.49)

We can now insert the sideband series from equation 2.44 into the modulated light field
from equation 2.42:

E = E0 exp(i(ω0t+ φ0))
∞∑

k=−∞
ikJk(m) exp(ikφ). (2.50)

By restricting the series to the three Bessel function approximations from equations 2.48
and 2.49 and by replacing φ with the cos term from the modulation signal in equation
2.43, we can write the modulated field as [26]:

E =E0

(
1− m2

4

)
exp (i (w0t+ φ0))

+ E0
m

2
exp

(
i
(
(w0 − Ω) t+ φ0 +

π

2
− φs

))
+ E0

m

2
exp

(
i
(
(w0 +Ω) t+ φ0 +

π

2
+ φs

)) (2.51)
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with sideband amplitudes

Asb =
m

2
E0 (2.52)

and sideband phases of

φsb = φ0 +
π

2
± φs. (2.53)

This describes a carrier field with two sidebands which are frequency-shifted by the
frequency Ω of the modulation signal. Fig. 2.9 shows the phasor diagrams for this light
field. Here we see that because of the additional sidebands, the resulting modulated field
changes its phase relative to the carrier periodically over time.

Re

Im

Re

Im

(a) (c)

Re

Im

(b)

Carrier Upper sideband

Lower sideband
Modulated �eld

Figure 2.9: Phasor diagrams for phase modulated light. The carrier field is given by the blue
vector rotating counterclockwise with the rate ω0. Red and green vectors show upper and lower
sideband fields rotating counterclockwise with ω0 ± Ω. The sideband fields have a π/2 constant
phase shift with respect to the carrier field (see equation 2.51) so that their sum is always
orthogonal to the carrier. Thus, the resulting modulated oscillation vector (yellow vector as the
sum of the other three) has a similar length compared to the carrier field but lags behind (a),
nearly matches (b) or outruns (c) the carrier phase periodically with the modulation frequency
Ω.

If we now consider a phase modulation triggered by a gravitational wave, we can insert
the phase change from equation 2.14 as the modulation signal from equation 2.43 and
state the amplitude and phase of gravitational wave induced sidebands as

Asb = −w0h0
2wg

sin

(
wgL

2c

)
E0 (2.54)
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and:

φsb = φ0 +
π

2
− ω0L

c
± φg ∓

wgL

2c
. (2.55)

As in equation 2.32, the term ω0L/c again results in zero, because L is defined as a
multiple of the wavelength so that this term is always a multiple of 2π. This result will
be used later for implementation of gravitational wave induced, phase modulated signal
sidebands.

2.3.4 Readout Techniques

A typical simulation based on coupling matrices of optical components as described
in section 2.3.2 solves the interferometer setup by calculating the light field amplitude
and phase for every frequency and every output port. Using these fields one can then
calculate error signals, frequency responses or sensitivity curves. Usually, different types
of simulated detectors are required for these tasks. Here we define the light field on a
detector placed at an interferometer output as

E = eiω0t
N∑

n=0

ane
iωnt, (2.56)

and introduce different detectors which are usually used in steady-state interferometer
simulation.

First, there is the amplitude detector, which is a pure hypothetical tool in simulation as
only light intensity or power can be measured directly in experimental tests. It simply
calculates the amplitudes of the light field at a specified frequency ωm, distinguishing
between positive and negative frequencies:

z =
∑
n

an with {n | n ∈ {0, . . . , N} ∧ ωn = ωm} . (2.57)

A second type of detector is the photodetector which measures the intensity of the light
field as defined by

S0 = |E|2 = E · E∗ =

N∑
i=0

N∑
j=0

aia
∗
je

i(ωi−ωj)t. (2.58)
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By applying a low-pass filter, the output of frequency independent components (ωi−ωj =
0) can be calculated as a real number effectively using the photodetector to measure only
the DC power:

S0,DC =
N∑
i=0

N∑
j=0

aia
∗
j with {i, j | ωi = ωj} . (2.59)

Another detector type is the photodetector with demodulation to measure the power at a
certain frequency. Here, the field is multiplied with a cosine with demodulation frequency
ωx and demodulation phase φx which is called the local oscillator :

S1 = S0 · cos (ωxt+ φx) = S0
1

2

(
ei(ωxt+φx) + e−i(ωxt+φx)

)
=

1

2

N∑
i=0

N∑
j=0

aia
∗
je

i(ωi−ωj)t ·
(
ei(ωxt+φx) + e−i(ωxt+φx)

)
.

(2.60)

Then again a low pass filter is applied to measure only the DC power after multiplication
with the local oscillator:

S1,DC =
N∑
i=0

N∑
j=0

1

2

(
Aije

−iφx +A∗
ije

iφx
)

with {i, j | ωij = ωx} (2.61)

where Aij = aia
∗
j and ωij = ωi − ωj . These three detector types allow us to measure the

amplitude and power of the carrier field as well as of signal sidebands which is necessary to
calculate the noise-to-signal ratio from equation 2.19 by taking into account the quantum
noise described in the next two sections.

2.3.5 The Sideband Formulation of Quantum Noise

Section 2.2.1 gave a brief overview of different noise sources present in a gravitational
wave detector. One of these was quantum noise which appears in two forms: shot noise
and radiation pressure. In this section, we will follow Bond et al. [26] to sketch a
derivation of the power spectral density SP which is needed for the calculation of the
noise-to-signal-ratio from equation 2.19 and which we will use later to implement shot
noise in our simulator.

The PSD of the noise in some photocurrent can be defined as the single-sided cross-
power-spectral-density
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SI(ω)δ
(
ω − ω′) = 2

〈
I(ω)I∗

(
ω′)〉 . (2.62)

The photocurrent I is proportional to the detected light power, so we can calculate it
using

I(t) ∼ P (t) = E(t)E∗(t). (2.63)

To calculate E(t), we first represent quantum fluctuations as noise in both amplitude
and phase of a carrier field:

E(t) = [a0 + na(t)] e
iω0t+nϕ(t)/a0 + c.c = [a0 + na(t) + inϕ(t)] e

iω0t + c.c. (2.64)

where na and nϕ are real amplitudes of phase and amplitude fluctuations which in the
frequency domain can form the complex noise

q(ω) = na(ω) + inϕ(ω). (2.65)

na(ω) and nϕ(ω) are characterized by Gaussian probability density functions with mean
µa,ϕ = 0 and variance σ2

a,ϕ. Noise with equal and minimum variance σ2
a,ϕ present in a

light field can be used to represent vacuum noise which can be understood as the photon
being incoherently created and annihilated at all frequencies. q(ω) is then a vacuum noise
sideband representing an incoherent and non-deterministic signal. For a more rigorous
approach than this semi-classical one, we refer to the review by Danilishin and Khalili
[4] where the sidebands are replaced by actual quantum mechanical operators.

In their two-photon formalism, Caves and Schumaker [53, 54] have shown that amplitude
and phase, the two quadratures of the light field, form an observable conjugate pair. Thus,
they cannot be measured simultaneously without some uncertainty and their fluctuation
variances follow the Heisenberg uncertainty principle

σϕσa ≥ ℏω
2
. (2.66)

We can now consider a carrier field with a continuum of such vacuum noise sidebands
relative to the carrier field frequency in the positive frequency spectrum:

E(t) =
a0
2
eiω0t +

eiω0t

2

∫ ∞

−ω0

q (ω0 + ω) eiωtdω + c.c. . (2.67)
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Now we can constrain the range of the noise sidebands to the bandwidth B ≪ ω0 of
gravitational wave induced signals in which they will actually affect the sensitivity:

E(t) =
1

2

[
a0 +

∫ B

−B
q (ω0 + ω) eiωtdω

]
eiω0t + c.c. (2.68)

Inserting this into equation 2.63 and neglecting terms of the order q2 yields

I(t) = |a0|2 + a∗0

∫ B

−B
q (ω0 + ω) eiωtdω

+ a0

∫ B

−B
q∗ (ω0 + ω) e−iωtdω +O

(
q2
)
.

(2.69)

Taking the Fourier transform and calculating the single-sided cross-power-spectral-
density as in equation 2.62 for 0 < ω ≤ B reduces the calculation to one upper and
one lower sideband:

SI(ω)δ
(
ω − ω′) = 2P0

(〈
q+q

′∗
+

〉
+
〈
q−q

′∗
−
〉)

+ 2a20
〈
q−q

′
+

〉∗
+ 2a2∗0

〈
q+q

′
−
〉

(2.70)

where we used the notation q (ω0 ± ω) ⇒ q±and q (ω0 ± ω′) ⇒ q′±. For vacuum noise,
the amplitude and phase fluctuations at different frequencies are independent, so for the
covariance between to vacuum sidebands we find:

〈
q(ω)q∗

(
ω′)〉 = ℏω

2
δ
(
ω − ω′)〈

q(ω)q
(
ω′)〉 = 0.

(2.71)

Inserting these covariance equations into equation 2.70 gives us the final noise PSD for
a single carrier field with vacuum noise:

SI (ω0 ± ω) δ
(
ω − ω′) = 2P0

(〈
q+q

′∗
+

〉
+
〈
q−q

′∗
−
〉)

= P0 (ℏ (ω0 + ω) + ℏ (ω0 − ω)) δ
(
ω − ω′)

SI (ω0 ± ω) = 2P0ℏω0.

(2.72)

This means, that vacuum fluctuations result in a noise source that is only dependent
on the power and frequency of the carrier field. In the two-photon formalism the usual
formalism is in terms of field quadratures, that is the cosine quadrature ac(ω) and the sine
quadrature as(ω). These can be calculated from the sidebands q+ and q∗− using
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[
ac
as

]
= A

[
q+
q∗−

]
, A =

1√
2

[
1 1
−i i

]
. (2.73)

To calculate the noise power spectral density (PSD) for a carrier field from pure vacuum
noise, equation 2.72 is all that is needed. However, the vacuum noise has its origin in
multiple sources within the optical setup: laser noise (from the spontaneous emission of
photons in the gain medium [55, 56, 57]), optical losses at mirrors or beam splitters (due
to the Fluctuation Dissipation Theorem [58, 59]) and squeezed vacuum field inputs. If
this optical system contains non-linear behaviour such as squeezing or radiation pressure
effects, the vacuum noise sidebands will get correlated and need to be propagated through
the entire system, similar to signal sidebands. For large interferometer models, the
number of noise sources is usually much greater than the number of detectors. Therefore,
the interferometer simulator Finesse implements the so-called multiple-input single-
output (MISO) method [60]. Here, the transfer functions of all noise sources for a single
output are computed together and combined to calculate the final noise PSD. Starting
from the input output equation with the interferometer matrix M, we find:

M q⃗out = q⃗in

M q⃗out q⃗
†

out M
† = q⃗in q⃗ †

in

q⃗out q⃗
†

out = M−1q⃗in q⃗ †
in M−1†〈

q⃗out q⃗
†

out

〉
= M−1

〈
q⃗in q⃗ †

in

〉
M−1†

Vo = M−1ViM−1†

(2.74)

To implement equation 2.72 with potential non-linear behavior from squeezers or op-
tomechanics, we thus have to calculate the co-variance matrix Vo of the output noise
sidebands. According to equation 2.74, this can be done efficiently through one inversion
of the interferometer matrix and two matrix products. This results in the co-variance
between any noise sidebands due to any noise sources at any output port in the optical
system. Equation 2.72 then is fully implemented by

SI =
s⃗ †
c Vos⃗c
2

, (2.75)

where s⃗c is the solution of the carrier field at the position of the photodetector which acts
as a selection vector and the factor 1/2 comes from the demodulation of the photodiode
output at the signal frequency [61].

For laser noise and surface losses, the diagonal of the input noise matrix Vi gets filled
with vacuum noise, so depending on the chosen vacuum unit e.g. similar to equation
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2.71 with ℏω/2. As briefly mentioned in section 2.2.1, shot noise can be reduced by
injecting squeezed light into the optical system. Squeezed light can be obtained as a result
of parametric down conversion (PDC) in optically nonlinear crystals [62] or through a
ponderomotive nonlinearity as induced by optomechanics described in section 2.3.6. For
details about PDC and a formal derivation of the squeezing transformation, we refer to
[63]. In general, a pump light emits photons with frequency 2ω0 which give birth to
correlated photons of frequencies ω1 and ω2 due to the nonlinear interaction with the
crystal. This process can be described by the so-called PDC Hamiltonian. Solving the
Heisenberg equations for this Hamiltonian in the interaction picture results in a squeezing
transformation for vacuum noise sidebands that takes the form [54, 61]

s (ω0 ± ω) = cosh(r) · q (ω0 ± ω) + sinh(r)e2iϕ · q† (ω0 ∓ ω) , (2.76)

where s (ω0 ± ω) are the amplitudes of squeezed fields and q (ω0 ± ω) are the amplitudes
of the coherent sidebands. Thus, to include a squeezed vacuum source in the noise input
matrix Vi, both diagonal and off-diagonal entries must be filled according to equation
2.76 as the two sidebands are now correlated.

Reducing shot noise via squeezing can be interpreted as reducing the uncertainty in
the phase quadrature of a light field which reduces the power fluctuations seen by the
output port photodetector. However, if not doing frequency dependent squeezing, this
will expand the uncertainty in the amplitude quadrature which in turn increases the
radiation pressure noise due to optomechanics described in the next section.

2.3.6 Simulating Optomechanics

Besides shot noise, the other quantum noise type is radiation pressure. In this section we
will give a short introduction to a simplified version of this effect by following the review
by Bond et al. [46] and the Finesse manuals [10, 9].

According to Maxwell’s theory of light, an optical field propagating in a vacuum exerts
a force on a surface that is proportional to its time-averaged Poynting vector. In the
frequency spectrum, this force can be written as [64]

F (ω) =
P (ω) cosα

c
(2.77)

where α is the angle of incidence, c the speed of light and P (ω) the power fluctuation
at frequency ω. With the high circulating power in the arm cavities of gravitational
wave detectors, this force is often large enough to displace the cavity mirrors by multiple
wavelengths of the light. This relatively large displacement is a control problem that is
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addressed by the process of lock acquisition [65, 66]. However, even in a well controlled
interferometer state, there are steady state optomechanical effects causing surface motion
as the result of perturbations in the optical field. These radiation pressure effects can
have significant effects on the sensitivity, e.g. through parametric instabilities [67] or
ponderomotive squeezing through optical springs [68, 69, 70].

The general process of such effects is that disturbances in light power induce some motion
of a surface which in turn creates phase modulation sidebands around any carrier that
is reflected from it. Considering e.g. a mirror with four ports, the applied force can be
written as

F (ω) =
P2i(ω) + P2o(ω)− P1i(ω)− P1o(ω)

c
, (2.78)

where optical fields coming from different sides also have opposing momentum reflected
by the choice of sign. P2i and P2o stand for optical fields at input and output of one
surface side, while P1i and P1o represent the optical input and output field from the other
side. It is important to note that the calculation of the power terms for a carrier field
with sidebands is given by

P (ω) = q+E
∗
0 + q∗−E0, (2.79)

including both upper and lower sidebands which get correlated in case of e.g. quantum
noise sidebands. The induced motion of a mirror due to Nf separate forces can be
described by

δz(ω) = H(ω)

Nf∑
n=0

Fn(ω), (2.80)

where H(ω) is the mechanical susceptibility or mechanical transfer function from an
applied force to the longitudinal mirror motion. If we assume a free-floating mirror (e.g.
due to a suspension system) we have

H(ω) = − 1

mω2
, (2.81)

which is a direct result of taking the Fourier transform of Newton’s second law. What
is now missing to close the loop is the transition from this mirror motion to an optical
phase change. As described in equation 2.31, a change in length is accompanied by a
phase change. In this case, the induced phase difference will be
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φ = −kδz(ω) (2.82)

and the result is a phase modulation and the creation of an additional pair of sidebands as
described in section 2.3.3. The formalism described in this section is a simplified version
of optomechanics which in general would not be possible to simulate using the linear sys-
tem approximation from section 2.3.2. Therefore, interferometer simulators are usually
based on reasonable approximations which simplify the calculation of optomechanical
effects under certain conditions. Specifically, due to equation 2.81 we can assume that
high-frequency power fluctuations are negligible. Low-frequency power fluctuations are
assumed to be very small, so that there is a clear separation between the carrier field and
any created sidebands. Third, we assume that the resulting mirror motion of any surface
is small with respect to the wavelength, that is we assume |δz(ω)| ≪ λ. In the case of a
steady state gravitational wave detector all of these assumptions are valid and used by
popular interferometer simulation software as described in the next section.

2.3.7 Interferometer Simulation Software

The central goal of interferometer simulators is to study important physical features of
interferometer setups in order to find possible improvements or minimize the probabil-
ity of unforeseen problems in the commissioning phase. The first prototype codes for
this purpose appeared in 1988, written by Jean Yves-Vinet [71] and were later used to
gradually implement ever more complex simulation tools for optical propagation, control
system feedback and mechanical suspensions [72, 73].

The design of complex interferometers usually makes use of different kinds of simula-
tion tools [74]. Firstly, full system time domain simulators address non-stationary and
nonlinear processes such as e.g. the lock acquisition process. These simulators are compu-
tationally expensive and are complex in structure. Two popular full system time domain
tools developed at LIGO and VIRGO are E2E [72] and SIESTA [73]. E2E was used for
the design and continuous improvement of the lock acquisition design during the initial
LIGO commissioning phase as well as for improvements in alignment control and first
sensitivity curve calculations of initial LIGO [75, 76, 77]. These simulators also include
suspension simulations for quadruple and triple pendulums [78] as well as simulations of
seismic isolation systems [79].

A second class of simulation tools are programs which calculate the details of field pro-
files in the interferometer using details of optics like e.g. the mirror surface aberration
[80, 71]. Ideally, the full system time domain simulators would natively include these high
detail field profiles. However, due to computational complexity the time domain models
mostly approximate fields using modal models with limited number of modes while the
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high detail profiles are studied separately using a static model based on the fast Four-
ier transform (FFT) method. These simulation methods have been used to decide the
optimal choice of mirror curvature, to improve the thermal compensation system and to
study the effect of beam splitter curvature [81]. An example of such a high-detail field
profile simulator is a tool called FFT [81, 80].

The third group of simulators are simulators which describe only stationary and linear
systems [60]. They are not capable of simulating time-dependent processes such as e.g.
the lock acquisition process or the time evolution of the light fields in cavities. After an
interferometer acquires lock and becomes stationary, it can be treated as a single linear
system and these steady-state simulators become applicable. Computationally they are
less demanding and easier to understand as a user because many non-linear and transient
behaviors are assumed away. Examples of popular FFT-based steady-state simulators
are OSCAR [82, 83] and SIS [84]. Popular frequency domain simulators that are in use
today are Optickle [85], MIST [86] and Finesse [8, 9, 10]. These simulators have been
deployed for design and commissioning tasks for LIGO, GEO600 and third generation
detectors such as the Einstein Telescope [60, 87] as well as for simulating optomechanical
effects [88] and running optimizations on detector designs [89, 7]. The different frequency
domain simulators differ e.g. in terms of how they compute higher order modes and which
interferometer matrix schemes they are using [86].

In addition to being applied in practice for commissioning, design and optimization tasks,
there also exist studies comparing the results from different simulators like Finesse,
Optickle and OSCAR [90, 91]. While most results match between simulators, there are
also unexplained differences where it is not clear which simulator produces more accurate
values as reference results are missing.

We use the open source Finesse simulator [8, 10] as a template for our new Differometor
simulator. The idea for Finesse first came up in 1997 when Andreas Freise and Gerhard
Heinzel were working on a 30 m prototype interferometer with Dual Recycling in Garch-
ing. Since then, Andreas Freise developed Finesse during his work at GEO 600 until
Daniel Brown took over development around 2013 and later developed the open-source
Finesse 3 version that is the template for Differometor [10, 60].
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L0 m1 m2
CAV

reflected power circulating power

transmitted power

Figure 2.10: Left: cavity setup as described in code block 2.1. Right: power outputs from the
three shown detectors, simulated with Finesse.

Finesse implements all mechanisms described in this chapter. It describes optical com-
ponents via coupling matrices, offers different methods for light field modulation and
readout techniques, models quantum noise in the sideband formulation and simulates
different optomechanical effects. It can perform analysis using plane waves or Hermite-
Gaussian modes where the latter allows for the computation of mode matching and mis-
alignment effects. Finesse comes with its own model syntax which allows the definition
of complex optical systems. For example, a cavity as shown in Fig. 2.10 can be defined
and simulated as shown in code block 2.1 where the simulator sweeps over possible tuning
values and detects the power output at different points within the system.
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1 import finesse
2 finesse.configure(plotting=True)
3

4 kat = finesse.Model()
5 kat.parse(
6 """
7 # Add a Laser named L0 with a power of 1 W.
8 l L0 P=1
9

10 # Space attaching L0 <-> m1 with length of 0 m (default).
11 s s0 L0.p1 m1.p1
12

13 # Highly reflective input mirror of cavity
14 m m1 R=0.99 T=0.01
15

16 # Intra-cavity space with length of 1 m.
17 s CAV m1.p2 m2.p1 L=1
18

19 # Highly reflective end mirror of cavity.
20 m m2 R=0.991 T=0.009
21

22 # Power detectors on reflection, circulation and transmission.
23 pd reflected_power m1.p1.o
24 pd circulating_power m2.p1.i
25 pd transmitted_power m2.p2.o
26 """
27 )
28

29 out = kat.run("xaxis(m1.phi, lin, -180, 180, 400)")
30 out.plot(logy=True)

Code 2.1: Defining and simulating a cavity setup in Finesse. This example was taken from the
official Finesse 3 documentation [10]. Setup and power outputs are shown in Fig. 2.10.

2.4 Digital Discovery

Due to the availability of large datasets, improvements in parallel computing and storage
hardware and the invention of new algorithms, the power of artificial intelligence (AI)
methods has vastly increased since the early 2010s. In recent years, AI methods are also
being increasingly integrated into scientific discovery, a process that is sometimes called
Digital Discovery and often has the ultimate goal of leveraging these AI techniques to
gain new scientific understanding [92]. In this section, we give an overview of recent
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uses of AI methods for science based on the reviews by Krenn et al. [92] and Wang
et al. [93] and then concentrate on one specific approach to digital discovery in the
field of gravitational wave detectors which will be relevant for the optimizations in later
chapters of this thesis. Finally, we explain the term Differentiable Programming as the
main programming paradigm for this thesis.

2.4.1 AI for Scientific Understanding

Krenn et al. [92] identify three fundamental dimensions of how AI systems can contribute
to new scientific understanding. As computational microscopes they can help humans to
inspect and simulate complex physical systems, revealing insights which humans might
then turn into new understanding. As a resource of inspiration, AI methods can predict
and select promising scientific hypotheses or find surprising inconsistencies between data
and theoretical predictions which might again lead humans to gain new scientific under-
standing. Finally, as agents of understanding, future AI models might be able to gain
such understanding themselves and then pass it on to humans.

One process on the path towards scientific understanding is the formulation of meaning-
ful, testable hypotheses. AI methods can be used to support this process by predicting
potential hypothesis candidates. They can for example prioritize molecules for exper-
imental investigation in drug discovery [94], screen material candidates for technical
applications [95, 96] or predict the 3D atom coordinates of proteins from amino acid
sequences [97]. Reinforcement-learning algorithms and evolutionary algorithms can be
used to navigate combinatorial, discrete hypothesis spaces, like making discrete decisions
in the design process of molecules with specific pharmaceutical properties [98, 99], while
variational auto-encoders can map such discrete search spaces into differentiable ones,
which allow the application of gradient-based methods [100, 101].

AI methods can then also aid the evaluation of selected hypotheses. For example,
reinforcement-learning approaches can be used for experiment planning [102, 103] and
control tasks [104, 105]. So-called neural solvers combine physics and deep learning by
integrating domain knowledge into neural networks [106, 107] which makes it easy to
evaluate selected hypothesis in the form of differential equations. Simulation-based in-
ference [108] allows for efficient hypothesis testing by comparing simulated data with
observed data, enabling the estimation of model parameters and uncertainties.

Our ultimate goal with Differometor is to use AI to navigate a search space of scientific
hypotheses. In our case, these hypotheses are possible designs for new gravitational wave
detectors. A proof-of-concept of this design approach has been recently demonstrated
by Krenn et al. [7] and will be further discussed in the next section. Other recent works
have demonstrated successful automated hardware design in the field of quantum optics
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[6, 5], quantum circuits [109, 110, 111], photonic structure [112, 113] and microscopy
[114].

2.4.2 Digital Discovery of Gravitational Wave Detectors

For the digital discovery of new gravitational wave detectors, Krenn et al. [7] have in-
troduced Urania, a parallelized hybrid local-global optimizer. They start by defining the
search space of experimental detector topologies as a combinatorial problem. With one
laser, four optical elements and two detectors, there are already 3000 unique topologies
that could be built. Increasing the number of elements to 10 and assuming that each
element can be described by two continuous properties already yields 100 million unique
20-dimensional search spaces. They argue that instead of exploring this search space via
rational design, that is letting experts come up with novel ideas, one can phrase this as
an exploration task well suited for computational approaches.

They then transform this discrete, combinatorial search space into a continuous search
space suited for gradient-based optimization methods. To do this, they invent a quasi-
universal interferometer (UIFO) which avoids discrete component choices by including
enough components in a highly expressive topology which can by itself encode a large
portion of setups in the search space.

Fig. 2.11 A) shows an example of such a setup, consisting of 3 × 3 beam splitter or
Faraday isolator cells surrounded by lasers, squeezers and detectors. By choosing the
right parameters it is then possible to encode different topological structures like for
example the simplified aLIGO setup from Fig. 2.3 as shown in Fig. 2.11 B). A UIFO
of size 3× 3 has up to 187 parameters. UIFOs of size 4× 4 have 310 parameters, while
UIFOs of size 5× 5 reach up to 463 parameters.
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Beam Splitter Faraday Isolator Laser Squeezer Detector

A) Quasi-Universal Interferometer (UIFO) B) Simplified aLIGO setup in UIFO

Figure 2.11: A) The quasi-universal interferometer (UIFO) template from Krenn et al. [7] for
the size 3 × 3. It consists of nine cells with either beam splitter or Faraday isolator with four
enclosing mirrors. Light from lasers or squeezers is injected into the setup from the boundaries.
A detector is placed at one of the boundaries. B) The simplified aLIGO setup from Fig. 2.3
encoded in the UIFO from A). Transparent components are not used.

They estimate the quality of a setup by calculating its sensitivity (see section equation
2.19) with the interferometer simulator Finesse described in section 2.3.7 and by adding
some parameter constraints and limits for the power throughput. The loss function they
use is given by

Ltotal = LStrain + α · Penaltyhard + β · Penaltysoft + γ · Penaltybleach (2.83)

where α, β and γ are hyperparameters and
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LStrain ≈
∫ f1

f0

log(S(f))df,

Penaltyhard =
∑
RO

f (p(RO), coh, c1) ,

Penaltysoft =
∑
TO

f (p(TO), cos, c2) ,

Penaltybleach =
∑
Det

f (p(Det), cod, c3) .

(2.84)

Here, S(f) is the sensitivity at frequency value f , p() stands for the power throughput
at a transmitting object (TO) or reflecting object (RO) or at a detector (Det). f() is
a penalty function (e.g. a cumulative logistic function CDF) which is shifted by the
power cutoff value co and scaled by some hyperparameter c. These penalty functions
are designed to protect interferometer components from too high power throughput and
therefore from getting burned and damaged.

Their optimization algorithm Urania then starts with a pool of more than 1000 UIFO
setups either randomly initialized or adapted from existing solutions for different fre-
quency targets. Urania randomly chooses setups from this pool (weighting better per-
forming ones higher) and either simplifies them or optimizes their parameters using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [115, 116, 117, 118]. Using this ap-
proach Krenn et al. find 50 UIFO configurations that outperform an optimized aLIGO
baseline and show interesting detector designs.

At the core of this kind of digital discovery approach lies the simulator, which translates
experimental designs to physical outputs used in objective functions. In case of the Urania
algorithm, the simulator Finesse represents the main bottleneck. Being implemented in
NumPy [11], it can only run on CPU, so to identify the 50 UIFO configurations, Krenn
et al. have spent around 1.5 million CPU-hours. The next section describes potential
performance improvement techniques and introduces the main programming paradigm
used for the implementation of our Differometor.

2.4.3 Differentiable Programming

Three potential techniques to speed up simulators are Just-In-Time (JIT) compilation,
Graphics Processing Unit (GPU) execution and auto-differentiation.

JIT compilation [119] dynamically compiles code portions during runtime, optimizing its
behavior based on runtime requirements such as the used hardware and thereby increas-
ing computational efficiency. GPU execution allows multiple calculations to be performed
concurrently through specialized hardware units and thereby speeds up simulators that
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allow for such execution. Auto-differentiation [120, 121] augments standard code execu-
tion with the automatic and efficient calculation of its derivative. It implicitly redefines
the semantics of operators to propagate derivatives via the chain rule of differential calcu-
lus. While numerical gradient approximations would need to call the simulator multiple
times per variable to determine its gradient, a simulator that implements automatic
differentiation, yields the gradient of its output with only one function evaluation.

A prominent programming framework that combines these three features is JAX [12],
which is developed by Google Research and was originally conceived for complex deep
learning tasks. JAX is designed to follow the workflow and structure of NumPy as closely
as possible and therefore allows for easy integration into existing Python code. We use
this framework in later chapters to implement our differentiable interferometer simulator.
Due to the mentioned features, JAX is well-suited for scientific programs and simulators.
However, offering these features comes with its own set of constraints. First, JAX features
like e.g. JIT compilation only work for Python functions that are functionally pure, i.e.
functions where all inputs are passed as parameters and all results are output through
the function’s return statement. Second, JIT compilation only works when function
outputs have static shapes, i.e. the shapes of output arrays are not dependent on the
values of function inputs. Third, Python control flow and logical operators like if and
else are executed at JIT compilation time and can’t depend on the values of function
inputs either. For example, the Python functions from code block 2.2 cannot be JIT
compiled.

1 @jit
2 def f(x):
3 if x < 3:
4 return 3. * x ** 2
5 else:
6 return -4 * x
7

8 @jit
9 def nansum(x):

10 mask = jnp.invert(jnp.isnan(x)) # boolean mask selecting non-nan values
11 x_without_nans = x[mask]
12 return x_without_nans.sum()

Code 2.2: Examples of Python functions that throw errors during JIT compilation. Examples
taken from [12].

In general, auto-differentiation is the workhorse of Differentiable Programming [122],
a generalization of neural networks and deep learning and a programming paradigm
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that enables the implementation of parameterized software modules that can be trained
with gradient-based optimization. Differentiable Programming allows easy integration
of deep learning methods into arbitrary algorithmic structures that go beyond matrix
multiplications and nonlinear element-wise operations and is therefore well suited for the
implementation of physical simulations. While deep learning frameworks like TensorFlow
or PyTorch have dominated the Differentiable Programming landscape during the past
decade, more recent general purpose frameworks like JAX, DiffTaichi [123] and Julia
[124] are currently on the rise.

Recent works in the field of Differentiable Programming include differentiable pipelines
for learning protein structure [125], rigid body simulations [126], complex computational
fluid dynamics [127], molecular dynamics [128], matrix elements of high energy scattering
processes [129] and hybrid classical-quantum systems [130].
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Differometor - A Differentiable
Interferometer Simulator

In this chapter, we introduce Differometor, a new, differentiable steady-state frequency
domain interferometer simulator implemented in Python using the JAX framework. Dif-
ferometor is based on Finesse 3, the open-source interferometer simulation program
described in section 2.3.7. Differometor is designed to overcome the simulator bottleneck
for the digital discovery of gravitational wave detectors (see section 2.4.2), but can also
be used for other interferometer optimization or design tasks.

Building on the provided background in section 2.3, we first describe how the different
parts of Differometor are implemented and demonstrate their functionality in simple ex-
amples (section 3.1 to 3.3). In section 3.4, we then verify Differometor against Finesse
3, demonstrating the close agreement of the two simulators for different setups. In ad-
dition, we compare Differometor and Finesse in terms of performance and demonstrate
the achieved speedup based on just-in-time compilation and GPU support.

3.1 Setup Definition and Components

Similar to Finesse, Differometor offers an easy way to define an optical setup. Instead of
offering a custom syntax like Finesse does, Differometor uses the Python package Net-
workX [131] to define an optical setup as a graph structure. Nodes are optical components
like lasers, mirrors or beam splitters and edges are spaces between these components. Fig.
3.1 shows an overview of available components and their default properties.
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laser:    properties = { power: 1. , phase: 0. }, target = None, port = left, direction = in  

mirror:    properties = { reflectivity: 0.5 , loss: 0. , tuning: 0. }

beamsplitter:  properties = { reflectivity: 0.5 , loss: 0. , tuning: 0. , alpha: 45.}

squeezer:  properties = { db: 0. , angle: 0.}, target = None, port = left, direction = in  

free_mass:   properties = { mass: 40. }, target = None

space:    properties = { length: 0. , refractive_index: 1. }, source_port: right, target_port: left

frequency:   properties = { frequency: 1. }f

signal:    properties = { amplitude: 1. , phase: 0. }, target = None

detector:   properties = { }, target = None, port = left, direction = in 

Symbol Component Parameters

qnoised:   properties = { }, target = None, port = left, direction = in 

properties = { }directional_
beamsplitter: 

nothing:   properties = { }

Figure 3.1: A list of Differometor components and their parameters.

The laser has a phase parameter and a power parameter which translates into the light
field amplitude E0 from equation 2.21 using

P =
ϵ0c

2
E0E

∗
0 , (3.1)

where ϵ0 is the electric permeability of vacuum and c the speed of light. Additionally,
the laser has target, port and direction parameters with which it can get directly
connected to a certain port of a component without using a space in between.

The squeezer has a db property which determines the squeezing magnitude in dB and
translates into the squeezing parameter r using
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rdb = 20r log10(e). (3.2)

The angle property determines the squeezing angle ϕ. If ϕ = 0, 180 the vacuum is purely
amplitude squeezed while it is phase squeezed if ϕ = ±90. Similar to a laser the squeezer
has additional parameters to connect it directly to a component port without a space in
between.

Due to the interferometer matrix implementation, Differometor always calculates all
lights fields at all ports of the optical system. The detector component simply indicates
at which port the light field should get measured and can be directly connected to a
specific port using the target, port and direction parameters. The light field at the
specified port can then be measured using different detector functions which implement
the equations from section 2.3.4. First, the amplitude detector function returns the
amplitude of the light field and is implemented as:

famplitude(z) =

√
ϵ0c

2
|z|. (3.3)

Here, z is the complex light field at the specified port. The power can be calculated via
the power detector function:

fpower(z) =
ϵ0c

2
|z|2. (3.4)

The phase detector function extracts the phase of the complex light field:

fphase(z) = arctan(
b

a
) (3.5)

where b and a are the complex and real part of the light field z = a + ib. For signal
demodulation, we use the demodulation detector function:

fdemodulation(c, s) = c∗s+ cs∗ (3.6)

where c is the complex carrier field at the port acting as local oscillator and s is the com-
plex signal field. The sensitivity detector function enables the calculation of sensitivity
as shown in equation 2.19 and is implemented via

fsensitivity(p, n) =
n

|p|
(3.7)
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where n is the quantum noise calculated for this port and p is the complex signal power
at the port. The quantum noise detector from Fig. 3.1 indicates for which port the
quantum noise should get calculated and sets the entries of the selection vector in equation
2.75.

Mirrors and beam splitters take a loss L and a reflectivity fraction Rf as input (called
reflectivity in Fig. 3.1). Reflection and transmission coefficients can then be calculated
via R = Rf ·(1−L) and T = (1−Rf )·(1−L) where R = r2 and T = t2 and R+T+L = 1.
The reason for the reflectivity fraction instead of the reflection coefficient itself is to be
able to optimize both reflectivity and loss in an unconstrained way. If we would have L
and R as input parameters, then it would lead to a constrained optimization problem
which can be difficult to handle. With the reflectivity fraction, we can optimize both Rf

and L independent from each other between 0 and 1.

The directional beam splitter from Fig. 3.1 acts like a Faraday isolator where light fields
from the left port get propagated to the right port, light fields at the top get propagated
to the left, light fields from the right get propagated to the bottom and light fields from
the bottom get propagated to the top.

Free mass components can be attached to mirrors and beam splitters via their target
parameter and will lead to optomechanical effects. Signal components induce space
modulation and can be attached to spaces via their target parameter, by combining the
component names which are connected by the space using _.

A component port always has one input and one output direction. Mirrors have two ports
left and right, whereas beam splitters and directional beam splitters have four ports (left,
right, top, bottom). When connecting components through spaces or attaching lasers or
detectors, we can specify the port and the direction. As an example, we define the cavity
setup similar to the Finesse one from code block 2.1 as follows:
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1 import networkx as nx
2

3 G = nx.DiGraph()
4 G.add_node("l0", component="laser")
5 G.add_node("m1", component="mirror", properties={"reflectivity": 0.99})
6 G.add_node("m2", component="mirror", properties={"reflectivity": 0.991})
7

8 G.add_edge("l0", "m1")
9 G.add_edge("m1", "m2", properties={"length": 1})

10

11 G.add_node("reflected_power", component="detector", target="m1",
direction="out")↪→

12 G.add_node("circulating_power", component="detector", target="m2")
13 G.add_node("transmitted_power", component="detector", target="m2",

port="right", direction="out")↪→

Code 3.1: The definition of a simple cavity setup in Differometor.

Here, we add a laser with name l0 together with two mirrors named m1 and m2 and
connect all of these components through spaces with certain lengths. Then we add three
detectors as shown in Fig. 2.10.

3.2 The Build Step

Given a defined setup, we now aim to implement a differentiable simulator which is
designed for the digital discovery of gravitational wave detectors as described in section
2.4.2. This goal comes with a set of its own requirements and constraints.

First, in order to overcome the simulator bottleneck of existing approaches to gravita-
tional wave detector optimization, one requirement for Differometor is to be performant
in terms of execution and gradient calculation. As explained in section 2.4.3, speedup
is possible through e.g. JIT compilation, GPU execution and auto-differentiation. All
these features are offered by JAX, but entail additional programming constraints like the
restriction to pure functions and static inputs (see section 2.4.3).

A second requirement comes from the optimization process. We would like to use Differ-
ometor to e.g. start with a randomly initialized interferometer setup and then optimize
the parameters of the optical components in such a way, that the sensitivity of the setup
is maximized. A suitable loss function to do this is equation 2.83. Thus, one requirement
for the implementation of Differometor is the possibility to select certain parameters as
targets for optimization.
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Furthermore, the loss function from equation 2.83 requires the setup to run multiple
times for different parameter values (e.g. for 100 different frequencies to approximate
the sensitivity integral). Thus, a third requirement is the possibility to define a set of
parameters which change during the simulation within corresponding value ranges. It
should for example be possible to define a loss function that calls the simulator 100 times,
each time with a different frequency.

The individual penalty terms of the loss function from equation 2.84 introduce a fourth
requirement. In order to sum over the penalty functions for high power throughput, we
need to know the light fields at all components within the optical system. In order to
have access to all these fields, Differometor is implemented following the interferometer
matrix approach explained in section 2.3.2. By solving the system of equations defined
by the interferometer matrix, all light fields are calculated and can subsequently be used
to compute power throughput penalties.

The first step in bringing all these requirements and constraints together is the realiz-
ation that at its core, the simulation is simply about updating specific entries of the
interferometer matrix and solving the resulting system of equations. The physics comes
in through the structure of the matrix and through a small set of functions which are
used to calculate the new matrix entries. This matrix updating has to be implemented
in JAX using pure functions and static inputs only.

A Differometor simulation is therefore divided into 2 steps, the build step and the sim-
ulation step. The build step takes an optical setup defined as a graph structure and
compiles it into a set of arrays which are needed to perform updates of the interfero-
meter matrix and passed to the simulation step. The build step needs to be executed
only once per optical setup and is implemented using NumPy [11] as it does not need to
be differentiable.

Fig. 3.2 shows a schematic overview of the simulation of a cavity as defined in code block
3.1. The arrays which need to get compiled during the build step are marked in blue.
First, there is the parameter array which contains the properties of all components of the
optical system. When starting a simulation the user can specify parameters that should
get optimized based on the simulation outcome. Based on this user input, the build step
compiles arrays which hold these optimized values and the indices of where to place them
in the parameter array (step 1 in Fig. 3.2).

47



Chapter 3 Differometor - A Differentiable Interferometer Simulator

5,   0.99,   0,     90  ,  0.99,   0,       0,          1,          1

l0  , m0  , m0  , m0  , m1  , m1  , m1  , m0m1  , m0m1P R L φ R L φ L n

Parameters ( P )

5 Optimized parameter values ( OP )

0 Optimized parameter indices ( OP )

0, 90 Changing parameter values ( CP x V )

3 Changing parameter indices ( CP )

l0  , m0  , m0  , m0  , m1  , m1  , m1  , m0m1  , m0m1P R L φ R L φ L n

Parameters ( V x P )

5,   0.99,   0,       0  ,  0.99,   0,       0,         1,          1

1) 2)

f      , f         , flaser surface space0, 1, 1, 2

f      , f         , f         , flaser surface spacesurface

0, 0, 0
1, 2, 3
4, 5, 6
7, 8, 0

Function input indices ( F x I )

Function indices ( F ) Functions ( K )

Selected functions ( F )

5,         5, 5
0.99,  0, 0
0.99,  0, 0
1,        1, 5

Function inputs ( F x I x V )

f        ,      0,              0
f             , f             , f
f             , f             , f
f         ,     0,              0

laser o

surface1 Tsurface1 R1 surface1 R2

surface2 Tsurface2 R1 surface2 R2

space o

Function outputs ( F x O x V )

3)

4)

5)

0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3
0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 0

Output indices ( 2 x M )

f        , f              , f             , f             ,
f              , f              , f             , f             , 
f              , f         , f  

laser o surface1 R1 surface1 T surface1 T

surface1 R2 surface2 R1 surface2 T surface2 T

surface2 R2 space o

Filtered function outputs ( O x V )

0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3
0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 0

Matrix indices ( 2 x M )

1,             0, 0               0,          0,               0,         0,              0, f
f              , 1, f             ,   0,          0,               0,         0,              0, 0
0,      0, 1,  0,          0,               f         , 0,              0, 0
f             ,  0, f              ,  1,          0,               0,         0,              0, 0
0,              0, 0,               f          , 1,               0,         0,              0, 0
0,              0, 0,               0,           f             ,  1,         f             ,  0, 0
0,              0, 0,               0,          0,               0,         1,              0, 0
0,              0, 0,               0,           f            ,   0,         f              , 1, 0            

laser o

surface1 R1 surface1 T

space o

space o

surface1 T surface1 R2

space o

surface2 R1 surface2 T

surface2 T surface2 R2

Carrier system ( X x Y + 1 x V )

5  , 0.99,   0,       0,   0.99,    0,      0,          1,            1

1,             0, 0               0,          0,               0,         0,              0
f              , 1, f             ,   0,          0,               0,         0,              0
0,      0, 1,  0,          0,               f         , 0,              0
f             ,  0, f              ,  1,          0,               0,         0,              0
0,              0, 0,               f          , 1,               0,         0,              0
0,              0, 0,               0,           f             ,  1,         f             ,  0
0,              0, 0,               0,          0,               0,         1,              0
0,              0, 0,               0,           f            ,   0,         f              , 1            

surface1 R1 surface1 T

space o

surface1 T surface1 R2

space o

surface2 R1 surface2 T

surface2 T surface2 R2

f
0
0
0
0
0
0
0            

laser o

Carrier matrix ( X x Y x V ) Input vector ( X  x V )

E  , E  , E  , E  , E  , E  , E  , E  1 2 3 4 5 6 7 8

Solution vector (X x V)

6)

7)

8)

9)

Figure 3.2: Differometor’s carrier solving system. Blue arrays are outputs of the build step while
gray arrays indicate newly composed arrays or values. 1) The parameter array gets updated with
the values of the optimized parameters via an index array. 2) The parameter array gets expanded
into a second dimension by the values of the changing parameters via another index array. 3) A
third index array is used to build an array of function inputs necessary for the optical system at
hand. The function input array contains dummy values to conform to the matrix shape. Dummy
values are indicated in red. 4) Another index array is used to select the functions necessary for
the optical system at hand. 5) The function input array is processed by the selected functions
which results in a function output array. Again, the output array contains dummy values to
conform to the matrix shape. 6) A fifth index array selects function outputs that should actually
get placed in the carrier system. 7) Another index array delegates the selected function outputs
to their positions in the carrier system. 8) The carrier system contains both carrier matrix and
input vector and gets split to perform the final solving step. 9) The carrier system gets solved
and outputs the solution vector containing the fields at all input and output ports of the optical
system.

Additionally, the user can also specify parameters which change during simulation. This
initiates multiple parallel simulations for which the build step compiles arrays holding
the values of the changing parameters as well as the indices of where to place them in
the parameter array (step 2 in Fig. 3.2).
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To calculate the entries of the coupling matrices of different components, the build step
also compiles function and index arrays encoding which parameters should get processed
by which functions and how the outputs of these functions should then get distributed
over the interferometer matrix. Specifically, the build step compiles an index array which
dependent on the optical system at hand, selects the functions necessary to compute the
updated interferometer matrix entries from a static list of all available functions (step
4 in Fig. 3.2). The build step also compiles an index array indicating which of the
parameters are needed as inputs to these functions (step 3 in Fig. 3.2). To make use of
the JAX feature vmap offering automatic vectorization, the function input index array
contains dummy elements to be able to place all function inputs in one array even so
some functions might need a different number of inputs. For the same reason, the output
array of the function application also contains dummy elements as some functions might
return more values than others. To filter out potential dummy elements, the build step
compiles another output index array filtering only actual return values (step 6 in Fig.
3.2). To be able to distribute these return values over the interferometer matrix the build
step compiles another matrix index array encoding the positions of all optical elements
and their coupling matrix structures (step 7 in Fig. 3.2). The functions used to compute
the updated interferometer matrix entries are the core implementation of the physics
described in chapter 2 and are explained in the next few sections.

3.3 The Simulation Step

The simulation step updates and solves the system of linear equations defined by the
interferometer matrix of the optical system based on the information it gets from the
build step. To compute the updated matrix entries it makes use of different functions
that implement the physics described in chapter 2. We can categorize these functions into
the carrier system, the signal system, the quantum noise system and the optomechanics
system which will be described in the next sections.

3.3.1 The Carrier System

The carrier system handles light fields without a frequency offset from the default fre-
quency. Carrier light fields are usually subject to some kind of modulation, e.g. by a
modulator or by a signal as described in section 2.3.3. The core of the carrier system
is the carrier matrix, an interferometer matrix that describes the entire optical setup.
As described in section 2.3.2 this matrix is built from coupling matrices of the different
components of the optical system along the matrix diagonal connected by space entries
in the off-diagonal parts.
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There are five core functions necessary to simulate the carrier system. The first function
is the laser function with power P and phase φ (in radians) as input arguments:

flaser(P,φ) =

√
2P

ϵ0c
· exp(iφ). (3.8)

This is equation 2.21 with the power scaling factor introduced in equation 3.1.

The second function is the space function with frequency offset ∆f , length L and re-
fractive index n as input arguments:

fspace(∆f, L, n) = − exp(−i2π
∆f

c
nL). (3.9)

This calculates the space connector entries as described in equation 2.41. The next three
functions can be used for both mirrors and beam splitters to calculate all entries of their
coupling matrices described by equations 2.37 and 2.40. Their inputs are reflectivity
R, tuning ϕ, frequency offset ∆f , default frequency f0, left refractive index n1, right
refractive index n2, and tilt angle α. The three equations are derived from the equations
2.38 and 2.36 and given by

faux1(n1, n2, α) = cos

(
arcsin

(
n1

n2
sinα

))
(3.10)

faux2(ϕ,∆f, f0, n1, α) = 2ϕn1 cosα

(
1− ∆f

f0

)
(3.11)

faux3(ϕ,∆f, f0, n1, n2, α) = 2ϕn2faux1

(
1− ∆f

f0

)
(3.12)

frefl1(R,ϕ,∆f, f0, n1, α) = −
√
R exp (ifaux2) (3.13)

frefl2(R,ϕ,∆f, f0, n1, n2, α) = −
√
R exp (−ifaux3) (3.14)

ftrans(T, ϕ,∆f, f0, n1, n2, α) = −
√
T exp

(
i

(
π

2
+

1

2
(faux2 + faux3)

))
(3.15)

where the auxiliary functions faux1, faux2 and faux3 have been defined for better readab-
ility. For mirrors we would set α = 0. We combine these three functions into one surface
function which first calculates the reflection and transmission coefficients R and T from
the reflectivity fraction Rf and the surface loss L and then computes the respective
entries of the coupling matrices.

The combination of laser, space and surface function is sufficient to calculate all entries of
the carrier matrix. Fig. 3.2 shows the simulation step for the cavity setup from code block
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3.1. First, Differometor updates the parameter array with the values of the optimized
parameters. Secondly, it expands this parameter array into a second dimension by the
values of the changing parameters. From here on, this second dimension of the parameter
array is processed in parallel using the JAX feature vmap. Third, Differometor selects the
necessary functions for the optical setup at hand and applies them to the corresponding
function inputs by making use of the JAX features vmap and lax.switch (steps 3, 4 and 5
in Fig. 3.2). The resulting output array is filtered from dummy values and the returned
values get placed in the interferometer matrix which holds both carrier matrix and input
vector (steps 6 and 7 in Fig. 3.2). After separating these two arrays, Differometor solves
the system of equations by making use of jax.numpy.linalg.solve (steps 8 and 9 in Fig.
3.2).

3.3.2 The Signal System

The signal system is responsible for the propagation of signal sidebands that potentially
get created by e.g. gravitational waves modulating the arm length of an interferometer.
We can extend the setup from code block 3.1 to include a gravitational wave signal which
is modulating the cavity:

1 import networkx as nx
2

3 G = nx.DiGraph()
4 G.add_node("l0", component="laser")
5 G.add_node("m1", component="mirror", properties={"reflectivity": 0.99})
6 G.add_node("m2", component="mirror", properties={"reflectivity": 0.991})
7

8 G.add_edge("l0", "m1")
9 G.add_edge("m1", "m2", properties={"length": 1})

10

11 G.add_node("f", component="frequency")
12 G.add_node("s0", component="signal", target="m1_m2")
13

14 G.add_node("reflected_power", component="detector", target="m1",
direction="out")↪→

15 G.add_node("circulating_power", component="detector", target="m2")
16 G.add_node("transmitted_power", component="detector", target="m2",

port="right", direction="out")↪→

Code 3.2: The definition of a cavity setup with gravitational wave signal in Differometor.
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Here we add a frequency component similar to the fsig command in Finesse and apply
a signal with default properties to the space between the two cavity mirrors.

We described the core equations behind the signal system in section 2.3.3. Differometor
implements them by defining two more functions. First, the signal function

fsignal(h, φ) = h exp(iφ), (3.16)

implementing the amplitude and phase of a signal, e.g. a gravitational wave as described
in equation 2.12. The space modulation function then implements the remaining signal
parts of the equations 2.54 and 2.55:

fmod(fs, L, n) = −i
f0
2fs

sin

(
2πfsLn

2c

)
exp(−i

2πfsLn

2c
). (3.17)

Here, f0 is the default laser frequency (a user defined constant in Differometor), fs is
the signal frequency, L is the macroscopic distance of the space and n is the refractive
index of the space. In contrast to the interferometer matrix of a pure carrier system (e.g.
given for a cavity setup in equation 2.28), the signal matrix has one additional row and
column:



1 0 0 0 0 0 0 0 0
−r1 1 −it1 0 0 0 0 0 0
0 0 1 0 0 fs 0 0 fmod · Ec3

−it1 0 −r1 1 0 0 0 0 0
0 0 0 fs 1 0 0 0 fmod · Ec5

0 0 0 0 −r2 1 −it2 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 −it2 0 −r2 1 0
0 0 0 0 0 0 0 0 1





E1

E2

E3

E4

E5

E6

E7

E8

S1


=



E1i

0
0
0
0
0
E7i

0
fsig


(3.18)

Here, fs is the output of the space function from section 3.3.1 and fmod and fsig are
the signal and modulation function outputs. Ec3 and Ec5 are solutions from the carrier
system. Analogous to Finesse, the signal gets therefore injected into the space between
the cavity mirrors and gets multiplied with the underlying carrier field to cover all parts
of the equations 2.54 and 2.55.

As the signal system introduces new parameters (e.g. signal frequency, amplitude and
phase), it also comes with additional index and value arrays of signal system parameters
which change during simulation, just as in step 2 of the carrier system in Fig. 3.2.
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The only other difference to the carrier system is the simulation of both upper and
conjugated lower sidebands. This doubles the size of the interferometer matrix as all the
matrix entries have to be calculated for two different frequencies. Fig. 3.3 shows the
structure of the resulting signal interferometer matrix. Besides that, the simulation step
of the signal system works exactly like the one of the carrier system described in section
3.3.1.
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Figure 3.3: The structure of the signal system interferometer matrix for the cavity setup from
code block 3.1. p1 and p2 refer to left and right ports respectively. i and o refer to input and
output port. Colors indicate the magnitude of the complex entries. The matrix is divided into
upper sideband, lower sideband and signal system. The mirror coupling matrices in upper and
lower sideband are marked by the dashed boxes. The signal system adds one new row and column
for each signal. The entries from equations 3.16 and 3.17 are labeled by their name.

3.3.3 Quantum Noise

The simulation step for quantum noise implements equation 2.75 which includes the
matrix multiplications from equation 2.74. So besides the signal interferometer matrix
M from section 3.3.2, the build step now also prepares information about the input noise
matrix Vi. Similar to carrier and signal system, the simulation step receives the input
noise matrix of the right shape initialized with zeros and a set of arrays with instructions
of how to update this matrix. Again, the simulation step uses similar arrays and a similar
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update mechanism as depicted in Fig. 3.2. The list of available functions gets extended
by three new input noise functions. First, the vacuum noise function to calculate the
input noise for lasers and unused component ports:

fvacuum_noise() =
u

2
, (3.19)

Similar to the global unit vacuum constant in Finesse, u is a custom vacuum unit that
can be modified by the user of Differometor and is set to 1 by default. The second input
noise function is the loss noise function for surface components with loss:

floss_noise(L) =
L

2
. (3.20)

Here, L is the loss of the respective surface for which the input noise gets calculated.
Lastly, another input noise function is the squeezer function for injecting squeezed va-
cuum into an optical system, implementing equation 2.76:

fdiagonal(r, ϕ) = u cosh(2r) (3.21)
foff_diagonal(r, ϕ) = u sinh(2r) exp(2iϕ) (3.22)

fsqueezer(r, ϕ) = [fdiagonal, foff_diagonal, f
∗
diagonal, f

∗
off_diagonal] (3.23)

where r and ϕ are the squeezing parameter and the squeezing angle respectively. The
build step then again passes function input indices, function indices, function output
indices and matrix indices (see step 3, 4, 6 and 7 from Fig. 3.2) to the simulation step,
which in turn uses these to update the input noise matrix.

We can extend the setup in code block 3.2 with an additional quantum noise detector
and a squeezer which injects squeezed vacuum into the input port on the left side of
mirror 2:
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1 import networkx as nx
2

3 G = nx.DiGraph()
4 G.add_node("l0", component="laser")
5 G.add_node("m1", component="mirror", properties={"reflectivity": 0.5,

"loss": 0.5})↪→

6 G.add_node("m2", component="mirror", properties={"reflectivity": 0.5,
"loss": 0.5})↪→

7

8 G.add_edge("l0", "m1")
9 G.add_edge("m1", "m2", properties={"length": 1})

10

11 G.add_node("f", component="frequency")
12 G.add_node("s0", component="signal", target="m1_m2")
13

14 G.add_node("sq1", component="squeezer", target="m2", properties={"db": 10,
"angle": 90})↪→

15

16 G.add_node("reflected_power", component="detector", target="m1",
direction="out")↪→

17 G.add_node("circulating_power", component="detector", target="m2")
18 G.add_node("transmitted_power", component="detector", target="m2",

port="right", direction="out")↪→

19

20 G.add_node("noise", component="qnoised", target="m2", port="right",
direction="out")↪→

Code 3.3: The definition of a cavity setup with an additional quantum noise detector, a squeezer
and a gravitational wave signal in Differometor.

We also changed the reflectivities of the two mirrors and added some loss to demonstrate
the resulting input noise entries. Fig. 3.4 shows the resulting input noise matrix. The
noise entries from the squeezer in rows 6 and 16 and columns 6 and 16 connect upper and
lower sidebands and indicate the correlation between the resulting sidebands. Apart from
that, the other ports are filled with normal vacuum noise or quantum noise originating
from the loss of the mirrors.
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Figure 3.4: The structure of the input noise matrix for the setup defined in code block 3.3.

As described with equation 2.75, the quantum noise gets calculated individually for each
photodetector using a selection vector s⃗c which is the solution of the carrier system re-
duced to only one non-zero entry at the position of the detector. With all these matrices
and vectors, the quantum noise simulation step of Differometor then performs the matrix
multiplications necessary to calculate equation 2.75, solving the equations for all photo-
detectors in parallel by making use of the JAX feature vmap. In the end, Differometor
scales the noise output with the Planck constant, and the default frequency.

3.3.4 Optomechanics

We can extend the setup from code block 3.2 and add free masses with default mass 40
kg to the two mirrors to allow for optomechanical effects:
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1 import networkx as nx
2

3 G = nx.DiGraph()
4 G.add_node("l0", component="laser")
5 G.add_node("m1", component="mirror", properties={"reflectivity": 0.99})
6 G.add_node("m2", component="mirror", properties={"reflectivity": 0.991})
7

8 G.add_node("m1_mass", component="free_mass", target="m1")
9 G.add_node("m2_mass", component="free_mass", target="m2")

10

11 G.add_edge("l0", "m1")
12 G.add_edge("m1", "m2", properties={"length": 1})
13

14 G.add_node("f", component="frequency")
15 G.add_node("s0", component="signal", target="m1_m2")
16

17 G.add_node("reflected_power", component="detector", target="m1",
direction="out")↪→

18 G.add_node("circulating_power", component="detector", target="m2")
19 G.add_node("transmitted_power", component="detector", target="m2",

port="right", direction="out")↪→

Code 3.4: The definition of a cavity setup with gravitational wave signal and optomechanical
effects in Differometor.

The Differometor simulation step for optomechanics is similar to the signal system sim-
ulation step in that it only adds new rows and columns to the interferometer matrix
and extends the list of available functions. Specifically, the first new function is the
implementation of equation 2.81, taking the signal frequency fs and the mass m of the
corresponding surface as inputs and returning the mechanical susceptibility for a free-
floating surface:

fsuscept(fs,m) = − 1

m(2πfs)2
. (3.24)

The optomechanics implementation also introduces new functions to calculate the ra-
diation pressure forces from both sides of a surface. Both functions are implementa-
tions of equation 2.77 and their sign implements the opposing momentum from equation
2.78:
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fforce1(α) = −cosα

cx
(3.25)

fforce2(α) =
faux1
cx

. (3.26)

Here, α is again the potential angle of incidence of the surface at hand and faux1 is the
auxiliary function from equation 3.10. x is another user defined Differometor constant
(again equivalent to Finesse) to scale mechanical output signals and is set to 10−9 by
default. P (ω) from equation 2.77 enters the equation later through the structure of the
equation system defined by the interferometer matrix. In addition, after placing the
return values of fforce1 and fforce2 in the interferometer matrix, they get multiplied with
the corresponding carrier field from the respective surface port.

To close the loop from radiation pressure through existing fields to the creation of new
sidebands as described in section 3.3.4, only the functions implementing the resulting
phase shift from equation 2.82 are still missing:

fcorrect(fs, ϕ) = exp(iϕ
fs
f0

) (3.27)

fphase1(fs, ϕ,R, n1, α) = −ixfcorrect
2π

λ
cosαfrefl1 (3.28)

fphase2(fs, ϕ,R, n1, n2, α) = ixf∗
correct

2π

λ
faux1frefl2 (3.29)

fphase1 and fphase2 are the actual functions, fcorrect is defined for better readability. The
functions take the signal frequency fs, the surface tuning ϕ, the reflectivity R, the re-
fractive indices n1 and n2 and the angle of incidence α as input. The reflectivity R is
calculated beforehand from the reflectivity fraction Rf and the surface loss L. frefl1,
faux1 and frefl2 are the functions from equation 3.13, 3.10 and 3.14 respectively. λ is the
default wavelength in Differometor which is set to 1064 · 10−9 m. x is again the scaling
factor for mechanical output signals.

Compared to equation 2.82, fphase1 and fphase2 don’t contain δz(ω). This surface dis-
placement enters the equation again later through the structure of the equation system
defined by the interferometer matrix. Fig. 3.5 shows this matrix structure and indicates
where all the return values from these functions will be placed. Mirror m1 occupies rows
2 to 5 and columns 2 to 5 for the upper sideband and rows 12 to 15 and columns 12 to 15
for the lower sideband. For each mirror port, the corresponding radiation pressure forces
get calculated via the results from fforce1 and fforce2 which have been placed in row 20
and multiplied by the carrier fields from the respective mirror ports. By summing over
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all these entries multiplied with the solutions for the signal fields at the respective mir-
ror ports, equation 2.78 gets implemented. Here, upper and lower sidebands get added
together to calculate the field power according to equation 2.79, leaving e.g. quantum
noise sidebands in a correlated state.
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Figure 3.5: The structure of the signal system interferometer matrix for the cavity setup from
code block 3.4. p1 and p2 refer to left and right ports respectively. i and o refer to input and
output ports. F and z refer to force and susceptibility entries respectively. Colors indicate the
magnitude of the complex entries. The matrix is divided into upper sideband, lower sideband,
optomechanics system and signal system. The mirror coupling matrices in upper and lower
sideband are marked by the dashed boxes. The optomechanics system adds 2 new rows and
columns for each free mass mirror. The entries of the optomechanics system are labeled by the
computing functions from equations 3.29, 3.26 and 3.24.

Through the susceptibility factor in row 21, column 20, this total force then couples into
the calculation of the new sidebands carried out by the entries in column 22. These are
formed by placing the return values from fphase1 and fphase2 and multiplying them with
the carrier fields from the respective input ports. fphase1 and fphase2 include the potential
angle of incidence as well as the computation of the reflection and tuning phase of the
carrier field by frefl1 and frefl2. As the frequency shifted sidebands will accumulate a
slightly different detuning phase when coming back from the surface, fphase1 and fphase2
also contain fcorrect to account for this phase difference.
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This optomechanics system enables the simulation of simple radiation pressure effects
that can be observed in the resulting sensitivity curve.

3.4 Differometor vs. Finesse

In this section, we compare Differometor to Finesse in terms of functionality, accuracy
and simulation time performance. The functionality comparison in section 3.4.1 provides
a better understanding of what Differometor can and cannot do at the moment. The ac-
curacy comparison in section 3.4.2 builds the basis for future trust in this new simulation
tool and the simulation time performance comparison in section 3.4.3 demonstrates that
Differometor already offers some advantages when running pure simulations without any
optimizations.

3.4.1 Functionality

Just like Finesse, Differometor is a frequency domain simulator that only works under
the assumption of a steady state optical setup. It can therefore not be used to simulate
nonstationary and nonlinear processes such as lock acquisition, control systems or time
evolutions of light fields inside cavities. For the purpose of digital discovery of interfero-
meter setups in a steady state, we can use Differometor to find possible setups and then
outsource the process of locking these setups into a steady state to other simulation tools
like E2E [72].

So far, Differometor implements only a subset of the functionality offered by Finesse.
We focused on only those features necessary to reproduce the digital discovery experi-
ments conducted by Krenn et al. [7]. Thus, all Differometor simulations are based on
a plane-wave approximation. This allows for a wide range of different simulations, but
does not support more complex analysis tasks involving the beam shape and position, e.g.
the effects of misaligned components. In addition to a plane-wave approximation, Fin-
esse also offers the functionality to extend simulations using transverse electromagnetic
modes (TEM) describing the transformation of the spatial distribution of a light beam
perpendicular to the optical axis [9]. Specifically, Finesse implements Hermite-Gaussian
beams of different order. This allows for the simulation of e.g. thermal distortions, tilted
surfaces, aperture effects or component misalignment. In addition, Finesse offers func-
tionality to simulate the surface motions of a particular surface using Finite-Element-
Model (FEM) software. In combination with Hermite-Gaussian beams, this allows for
simulation of parametric instabilities where the surface motion positively or negatively
feedbacks itself due to optical coupling.

When it comes to the simulation of optomechanical effects, Differometor only implements
longitudinal surface motion along the optical axis. Here, Finesse also offers rotational
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yaw and pitch motions allowing it to simulate e.g. torsional optical springs. While
Differometor only offers the free mass as a suspension simulation, Finesse also offers more
complex suspension systems like pendulums or customised suspension elements.

Finesse also offers functionality to simulate simple thermal effects. When a beam trans-
mits through or reflects from an optical component, a small fraction of power gets ab-
sorbed by the element. This leads to a thermal gradient within the component which
can cause changes of the refractive index (thermo-refractive effect) and can expand and
deform the optics (thermo-elastic effect). Finesse implements this using the Hello-Vinet
equations, a collection of analytic solutions for on-axis cylindrically symmetric beams in-
teracting with a cylindrical mirror. This allows for the simulation of e.g. thermal lensing
and deformations.

For the digital discovery tasks of new interferometer layouts that Differometor is designed
for right now, all these additional features are not yet crucial and will only be added in
future Differometor versions if necessary.
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1 import networkx as nx
2

3 def convert(transmissivity, loss, phi):
4 reflectivity = 1 - transmissivity / (1 - loss)
5 return {"reflectivity": reflectivity, "loss": loss, "tuning": phi}
6

7 G = nx.DiGraph()
8 G.add_node("L0", c="laser", p={"power": 125})
9 G.add_node("bs", c="beamsplitter", p={"reflectivity": 0.5, "alpha": 45})

10 G.add_node("prm", c="mirror", p=convert(0.03, 37.5e-6, 90))
11 G.add_node("itmx", c="mirror", p=convert(0.014, 37.5e-6, 90))
12 G.add_node("etmx", c="mirror", p=convert(5e-6, 37.5e-6, 89.999875))
13 G.add_node("itmy", c="mirror", p=convert(0.014, 37.5e-6, 0))
14 G.add_node("etmy", c="mirror", p=convert(5e-6, 37.5e-6, 0.000125))
15 G.add_node("srm", c="mirror", p=convert(0.2, 37.5e-6, -90))
16 G.add_node("sq1", c="squeezer", p={"db": 10, "angle": 90})
17 G.add_node("itmxsus", c="free_mass", target="itmx")
18 G.add_node("etmxsus", c="free_mass", target="etmx")
19 G.add_node("itmysus", c="free_mass", target="itmy")
20 G.add_node("etmysus", c="free_mass", target="etmy")
21

22 G.add_edge("L0", "prm")
23 G.add_edge("prm", "bs", p={"length": 53})
24 G.add_edge("bs", "itmx", p={"length": 4.5})
25 G.add_edge("itmx", "etmx", p={"length": 3995})
26 G.add_edge("bs", "itmy", source_port="top", p={"length": 4.45})
27 G.add_edge("itmy", "etmy", p={"length": 3995})
28 G.add_edge("bs", "srm", source_port="bottom", p={"length": 50.525})
29 G.add_edge("sq1", "srm", target_port="right")
30

31 G.add_node("f", c="frequency", p={"frequency": 5})
32 G.add_node("darmx", c="signal", target="itmx_etmx")
33 G.add_node("darmy", c="signal", target="itmy_etmy", p={"phase": 180})
34

35 G.add_node("qnoised", c="qnoised", target="srm", port="right", d="out")
36 G.add_node("pd1", c="detector", target="srm", port="right", d="out")

Code 3.5: Defining the simplified aLIGO setup from Fig. 2.3 in Differometor. c=, p= and
d= stand for component=, properties= and direction= respectively and are only introduced for
better readability.
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3.4.2 Accuracy Analysis

To validate Differometor, we conduct benchmark simulations against the established Fin-
esse simulator from section 2.3.7, which has itself been validated against other interfero-
meter simulation software, analytical solutions and against experimental data [46, 91, 87].
Fig. 3.6 shows comparisons between the Differometor and Finesse sensitivity curves cal-
culated for the simplified aLIGO setup from Fig. 2.3 and code block 3.5 when changing
different parameters. The aLIGO setup includes all possible mechanisms and features of
Differometor, from the carrier system and the simulation of a gravitational wave signal
to optomechanical effects and quantum noise sidebands.

Di�erometor Finesse

Figure 3.6: Comparison of sensitivity curves computed by Differometor and Finesse for the
simplified aLIGO setup from Fig. 2.3 and code block 3.5 for different changing parameters. The
inlets show the difference between the two curves. For each plot, 100 values of the respective
changing parameter have been simulated.

For quantitative assessment of the agreement, we compute the normalized root-mean-
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square deviation (NRMSD) for each curve over the 100 values of the respective changing
parameter using

NRMSD =

√∑N
i=1 (log10 (yi,Differometor)− log10 (yi,Finesse))

2 /N∑N
i=1 (−log10 (yi,Differometor)) /N

× 100% (3.30)

where y represents the curve being compared and N is the number of values for the
changing parameter. All comparisons show excellent ≪ 1% agreement with maximum
deviations on the order of 10−7. These can be explained by the numerical accuracy of
JAX vs. NumPy. JAX by default enforces single-precision numbers as XLA, the layer
between frontend machine learning frameworks and hardware backends, does not support
64-bit precision on all backends like e.g. GPU and TPU.

This demonstrates the close agreement of Differometor with the established interfero-
meter simulator Finesse for complex simulation tasks and also validates the accuracy
of the individual sub-components like the carrier, signal, optomechanics and noise sys-
tems.

3.4.3 Performance Analysis

The auto-differentiation feature of JAX is expected to enable a large speedup in gradient
calculation when running optimizations. However, JIT compilation and GPU execution
should also improve the simulation time performance even without running optimizations
with gradient calculations.

To confirm this, we run simulations of the simplified aLIGO setup from Fig. 2.3 and
code block 3.5 with the signal frequency as changing parameter. We then vary the
size of the value array for the signal frequency from 1 to 2 · 105. This corresponds to
the V dimension in Fig. 3.2 and means that in each run, the setup is simulated for
V different frequency values in parallel. We thus increase the number of simulations
done in each run and measure the time it takes to perform the build step and the
simulation step respectively. For Finesse, we define the build step as everything that
comes before the finesse.Model.run command which is mainly the parsing of the setup
definition into a Finesse model. The simulation step is then everything that happens
within the finesse.Model.run command, which is the actual simulation of the setup. For
Differometor, the build and simulation steps are explained in sections 3.2 and 3.3. We
average the timings for each step over 10 iterations where each run performs one iteration
before the time measurement starts to exclude any JIT compilation and caching effects.
CPU runs are done on Intel Xeon Gold 6130 x86_64 Skylake-SP CPUs while GPU runs
are done on Nvidia Quadro RTX 6000 Turing GPUs. Fig. 3.7 shows the results of this
experiment.
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build step simulation step

Figure 3.7: Comparison of average computation time for build step and simulation step for the
simplified aLIGO setup from Fig. 2.3 and code block 3.5. The number of simulations corresponds
to the size of the value array of the frequency as the changing parameter (V in Fig. 3.2). The
build step of Finesse is the parsing of the defined setup. Shaded areas indicate the standard
deviation.

For the build step, that is processing the defined setup and compiling the set of index
and value arrays necessary for the simulation step, we observe that the Differometor
GPU runs perform similar to Finesse while the Differometor CPU runs consistently
outperform the Finesse build step. As mentioned in section 3.2, the build step is not
implemented in JAX, but in NumPy and only converts all arrays to JAX at the end. The
discrepancy between the GPU and CPU runs for Differometor is due to the fact that the
GPU runs have to shift all arrays from CPU to GPU at the end of the build step. The
Finesse build step includes some computational overhead due to the parsing process of
the self defined syntax. In general, the build step only needs to be performed once for each
setup, followed by a larger number of simulations performed with the compiled model or
arrays. Thus, the more interesting timing comparison is the one of the simulation step
shown in Fig. 3.7 on the right.

Here, we first observe that the Differometor GPU runs outperform the Differometor CPU
runs. This is expected due to the parallelization advantages of running matrix operations
on a GPU instead of a CPU. Differometor simulations on GPU also consistently outper-
form Finesse simulations. This confirms the expected speedup due to JIT compilation,
GPU execution and automatic parallelization with JAX vmap. Being implemented in
NumPy, Finesse cannot make use of these features, resulting in slightly slower simula-
tions.

When profiling the different steps of the simulation process shown in Fig. 3.2, we ob-
serve that the steps 3 to 7 take the maximum amount of time and present the current
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computational bottleneck of Differometor. JAX performs array updates like the one in
Fig. 3.2 step 7 mainly out-of-place by returning a new version of the modified array
instead of altering the existing one. Reducing the size of the modified interferometer
matrix using sparsification promises another performance boost for future Differometor
versions.

Fig. 3.7 also shows that Differometor simulations on CPU are performing worse than
the Finesse counterpart which implements sparsification and supports in-place updates.
After implementing the sparsification of interferometer matrices in Differometor, the
CPU version is expected to perform comparably to Finesse.

Fig. 3.7 confirms that Differometor simulations with GPU already offer some performance
advantages, even without running optimizations and gradient calculations.
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Chapter 4

Differometor for Digital Discovery

In this chapter we apply our new Differometor simulator to first digital discovery tasks
and evaluate its performance with respect to gradient evaluation and convergence. In
section 4.1, we present an optimization of the simplified aLIGO setup from Fig. 2.3 and
code block 3.5, where Differometor starts from a setup with randomized parameters and
then rediscovers a version of the setup that produces the same sensitivity curve. We
compare the optimization performed by Differometor and AdamW [132] to a similar op-
timization with Finesse and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
[115, 116, 117, 118] to demonstrate the effect of auto-differentiation on gradient evalu-
ations.

In section 4.2 we extend this experiment by putting constraints on the power applied
to optical components and detectors and search the parameter space for a setup that
outperforms the simplified aLIGO setup with respect to the sensitivity curve.

Finally, in section 4.3, we implement the quasi-universal interferometer (UIFO) setup
described in section 2.4.2 and demonstrate the scalability of Differometor by running the
same optimizations as in section 4.2 with UIFO setups of different sizes.

All optimizations in this chapter are performed on Intel Xeon Gold 6130 x86_64 Skylake-
SP CPUs or Nvidia Quadro RTX 6000 Turing GPUs.

4.1 Rediscovery of Advanced LIGO

In section 3.4.3, we have shown that Differometor simulations offer performance advant-
ages due to GPU execution and JIT compilation. Another JAX feature that is expected
to improve the performance of Differometor optimizations is auto-differentiation. To
demonstrate this performance advantage, we start with the simplified aLIGO setup from
Fig. 2.3 and code block 3.5. This setup has 21 components with 46 parameters. As
surface losses should always be chosen as small as possible, we exclude these from the
optimizations. To keep the optimization similar to the ones performed by Krenn et al.
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[7], we also exclude refractive indices from the optimizations and are left with 31 optim-
ized parameters. Table A.1 in the appendix lists all parameters included in this simplified
aLIGO setup and indicates all optimized parameters.

We aim to reproduce the sensitivity curve with radiation pressure from Fig. 2.3 over 100
logarithmically distributed frequency values in the frequency range from 20 Hz to 5000
Hz, starting from a setup similar to the one in code block 3.5, but with all optimized
parameters randomly initialized. The loss function to achieve this is the mean squared
error:

LMSE =
1

N

N∑
i=1

(log10 yi − log10 ŷi)
2 , (4.1)

where N is 100, yi are the sensitivity values from the optimized setup and ŷi are the
sensitivity values from the setup in code block 3.5. The log10 is applied to account for
the fact that the sensitivity curve spans multiple orders of magnitude (see Fig. 2.3), where
the contribution of sensitivity values at small frequencies would be too large compared
to sensitivity values at higher frequency ranges.

We select the optimization procedure based on empirical tests and inspired by the meth-
ods used by Krenn et al [7]. We initialize all parameters uniformly distributed between
−6 and 6. Before each simulation, we then map all parameter values into the range 0
to 1 using a sigmoid function and scale them to their respective ranges shown in table
4.1. Here, we keep tuning parameters only between 0◦ and 90◦ as larger ranges lead to
a strong decrease in the rate of successful optimizations. Other parameter ranges are
chosen similar to what was used by Krenn et al. [7].

Parameter Bounds (Min) Bounds (Max)
db [db] 0.01 20
angle [◦] -180 180

power [W] 0.01 200
tuning [◦] 0 90
mass [kg] 0.01 200
length [m] 1 4000

reflectivity [%] 0 1
phase [◦] -180 180
alpha [◦] -180 180

Table 4.1: Physical parameter ranges for the optimization of the simplified aLIGO setup from
Fig. 2.3 and code block 3.5.
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To evaluate the optimization performance at different numbers of optimized parameters,
we first start with only one optimized parameter and then consecutively add more until we
reach the full set of 31 optimized parameters. We choose the optimized parameters in the
order they appear in table A.1 (i.e. starting with the squeezing magnitude of squeezer
sq1). For each set of optimized parameters, we first generate 1000 setups where the
optimized parameters are randomly initialized while all other parameters are initialized
as described in code block 3.5. We then calculate the loss of each of these setups and
take the best performing setup as the starting point for our optimizations. This should
enable the optimization to already start in a preferable region of the loss landscape where
it can then improve by the following gradient updates.

In this comparison, we use the AdamW [132] optimizer from Optax [133] with learning
rates 0.1 and 0.5 together with gradient clipping with maximum global norm 1.0 [134].
We choose two different learning rates to demonstrate the effect of the learning rate on
the convergence time and success rate. It should be noted that the choice of optimizer is
not the focus of this experiment and stems purely from a previous, empirical and non-
exhaustive hyperparameter testing session. Weight decay might not be beneficial in this
case and a pure Adam optimizer might be a better choice than AdamW.

In addition to the optimizations with Differometor and AdamW, we also use the op-
timization settings from the recent work by Krenn et al. [7] on the digital discovery of
gravitational wave detectors as a baseline and perform simulations with Finesse and the
BFGS optimizer. The procedure is the same as before, the only difference is the optim-
izer which is now run with standard BFGS hyperparameters from SciPy [135]. For the
Differometor case, we run the optimizations until they either exceed 15.000 iterations or
until their loss reaches below the loss threshold of 10−5. For Finesse, we run the optim-
izations until they exceed 15.000 iterations, cross the loss threshold of 10−5 or until the
BFGS step size reaches 0 after which running the optimization for longer won’t result in
meaningful changes.

Fig. 4.1 shows some example loss curves for successful Differometor and Finesse optim-
izations for the maximum of 31 optimized parameters. Different from the example loss
curves for unsuccessful optimizations in Fig. 4.2, all loss curves reach the loss threshold
of 10−5. For learning rate 0.1, the successful optimizations reach the loss threshold after
a sharp drop in the loss curve while optimizations with learning rate 0.5 often show
oscillating behavior, indicating that the learning rate is too high. Successful BFGS op-
timizations reach the loss threshold after multiple phases of sharp drops and constant
plateaus.
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A) AdamW Learning Rate 0.1 B) AdamW Learning Rate 0.5

C) BFGS

Figure 4.1: Examples of smoothed loss curves for successful Differometor and Finesse optimiz-
ations for 31 optimized parameters. An optimization is successful if it crosses the loss threshold
of 10−5 before being stopped by one of the termination criteria. An iteration is defined as a full
gradient evaluation (in the case of BFGS this involves running multiple simulations).
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A) AdamW Learning Rate 0.1 B) AdamW Learning Rate 0.5

C) BFGS

Figure 4.2: Examples of smoothed loss curves for unsuccessful Differometor and Finesse optim-
izations for 31 optimized parameters. An optimization is unsuccessful if it doesn’t cross the loss
threshold of 10−5 before being stopped by one of the termination criteria. An iteration is defined
as a full gradient evaluation (in the case of BFGS this involves running multiple simulations).

Fig. 4.3 A) shows the success rates (i.e. the number of successful runs) of all optimiza-
tions for the three different optimization combinations Finesse with BFGS, Differometor
with AdamW and learning rate 0.1 and Differometor with AdamW and learning rate 0.5.
Here, a successful run is an optimization that crosses the loss threshold of 10−5 before
being stopped by one of the termination criteria. For each number of optimized paramet-
ers there are 100 optimization runs where each run follows the optimization procedure
described above.
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A)

B) C)

D) E)

Figure 4.3: A) Success rates for the optimization combinations Finesse with BFGS, Differometor
with AdamW and learning rate 0.1 and Differometor with AdamW and learning rate 0.5. For
each number of optimized parameters, the success rate states how many runs out of 100 cross the
loss threshold of 10−5 before being stopped by one of the termination criteria. B) Convergence
timings (the time until an optimization crosses the loss threshold of 10−5) averaged over all
successful runs from A). C) Convergence time speedup as convergence time divided by the
convergence time of BFGS optimizations. D) Gradient evaluation timings (convergence time
divided by the number of iterations) averaged over all successful runs from A). E) Gradient
evaluation time speedup as gradient evaluation time divided by the gradient evaluation time of
BFGS optimizations.
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For the two Differometor combinations, we observe that the success rate stays at al-
most 1 until reaching the 18th optimized parameter (i.e. the beam splitter tuning as
the first tuning parameter, see table A.1) after which the success rates drop to around
0.5 for learning rate 0.1 and 0.25 for learning rate 0.5 after reaching 31 optimized para-
meters. The learning rate 0.1 consistently outperforms the learning rate 0.5 in terms of
the success rate. For the Finesse optimization, the success rate already drops signific-
antly at the 13th optimized parameter (i.e. the first mirror mass for itmx) and reaches
only 0.04 at 31 optimized parameters. This success rate behavior demonstrates that for
different optimizers, parameters can have strongly different effects on the optimization
outcome.

Optimizations with AdamW and auto-differentiation consistently outperform optimiza-
tions with BFGS and numerical gradient approximation in terms of success rate. This
demonstrates the advantage of unlocking direct gradient calculation through implement-
ing the simulator with auto-differentiation.

For the timings of convergence and gradient evaluation, we now restrict our comparison
to include only successful runs that have crossed the loss threshold of 10−5. We measure
the convergence time of the optimization until the loss threshold is crossed, excluding
parsing and compilation times from the build and JIT steps. We then calculate the time
to perform a single gradient evaluation as the convergence time divided by the number
of iterations. We average all timings over all successful runs. Fig. 4.3 B) to E) show the
results of these timing tests.

Optimization runs with learning rate 0.5 outperform runs with the learning rate of 0.1,
indicating some speedup benefits despite the oscillating loss curves in Fig. 4.1 and
the lower success rates. In terms of convergence time, Differometor optimizations with
AdamW consistently outperform Finesse optimizations using BFGS. Specifically for the
gradient evaluation time we observe that the evaluation time to numerically approximate
the gradient in BFGS increases linearly with the number of optimized parameters while
the evaluation times for AdamW using auto-differentiation stay nearly constant. This
leads to gradient evaluation speedup factors of up to 100 for 31 optimized parameters (see
Fig. 4.3 E)). This demonstrates the expected advantage of using a differentiable simulator
like Differometor compared to using Finesse and being restricted to numerical gradient
approximation.

However, comparing the speedups of convergence and gradient evaluation time, we ob-
serve that Differometor is not able to directly translate gradient evaluation speedups into
convergence time speedups. When using the AdamW optimizer, the convergence time
speedup factors vary strongly between 0 and 10 for learning rate 0.1 and 0 and 53 for
learning rate 0.5. This reflects the optimizer’s efficiency in deploying the gradient for
loss minimization and highlights the importance of the choice of optimizer.
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Fig. 4.4 shows the distribution of optimized parameters of all successful runs for the
Differometor optimization with AdamW and learning rate 0.1 at the full set of 31 op-
timized parameters. We observe that the optimized parameters don’t match the default
parameter values from code block 3.5. This shows that there is no unique solution to the
optimization performed here and that the same setup topology with different parameters
can lead to matching sensitivity curves.

Figure 4.4: Parameter distributions for all successful optimizations. An optimization is successful
if it crosses the loss threshold 10−5. Red dots indicate the default values of the simplified aLIGO
setup from code block 3.5.

This experiment demonstrates the performance advantage that Differometor offers when
running optimizations with large numbers of gradient evaluations. To find new gravit-
ational wave detectors by optimizing larger UIFO setups as done by Krenn et al. [7]
(see section 2.4.2), the optimizer needs to handle hundreds of parameters. In contrast to
running Finesse with BFGS on CPU and with numerical gradient approximation, Dif-
ferometor represents a promising alternative to tackle such larger optimizations.
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4.2 Constrained Sensitivity Optimization of Advanced LIGO

The optimizations in section 4.1 are unconstrained which means that some of the resulting
detector setups could result in light fields with high powers, potentially damaging optical
components. Due to the implementation following the interferometer matrix approach,
Differometor offers an easy way to prevent such high powers by applying additional
constraints on all component port light fields. All these light fields are calculated by
solving the system of equations defined by the interferometer matrix as shown in equation
2.28. To demonstrate this, we perform another experiment with the simplified aLIGO
setup from Fig. 2.3 and code block 3.5. Instead of trying to match the sensitivity curve of
the original setup, we now aim for a minimization of the sensitivity curves. Specifically,
we change our loss function to the one described by equations 2.83 and 2.84. For the
penalty function we choose a shifted rectified linear unit with a step defined by

f(p, co, c) =

{
0 if p ≤ co

(p− co) + c if p > co
, (4.2)

where p is the power throughput, co is the power cutoff value and c defines the size
of the penalty increase at this power cutoff. We choose the power cutoff values similar
to the ones used by Krenn et al. [7], but adjust them so that our simplified aLIGO
setup does not activate any penalties. Thus, we choose coh = 3.5 MW as the power
cutoff for the penalty function of reflecting objects, cos = 3 kW for the penalty function
of transmitting objects and cod = 10 mW for the bleaching penalty at detectors. We
identify transmitting and reflecting sides of an optical surface by calculating the light
field with the highest power on each side and then defining the side with the higher power
as the reflecting and the opposite side as the transmitting side. For all penalty function
steps c from equation 4.2 we choose 0.5 and for all the penalty weights α, β, γ from
equation 2.83 we choose 0.25.

Based on an empirical hyperparameter exploration, we use the Adam optimizer [136]
from Optax [133] together with gradient clipping with maximum global norm 1.0 [134],
learning rate 0.1 and a learning rate schedule with multiple joined cosine decay cycles
[137] as described in table 4.2.
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Phase Init Decay Steps Warmup Steps Peak End
1 0.1 2000 10 0.12 0.05
2 0.05 2000 10 0.06 0.025
3 0.025 2000 10 0.03 0.001
4 0.025 2000 10 0.0375 0.001
5 0.01 2000 10 0.012 0.0001
6 0.0001 1000 100 0.01 0.001
7 0.01 5000 100 0.1 0.0001

Table 4.2: Learning rate scheduler phases of multiple joined cosine decay cycles used for the
constrained sensitivity optimization of aLIGO.

We use a similar procedure as for the rediscovery experiment and first generate 1000
setups where all optimized parameters are randomly initialized between −10 and 10.
Before each simulation we again map all values to the range between 0 and 1 and then
scale them to their respective physical ranges using the boundaries from table 4.1. For
all 1000 setups, we calculate the loss for each one and start the optimization with the
best performing one. We then run the optimization until they exceed 30.000 iterations
or until the loss has not improved over 5000 iterations.

Fig. 4.5 A) shows the resulting losses for over 200 optimization runs. Around 39% of
the runs reach losses below the loss of the simplified aLIGO setup at −23.56 without
activating any penalty terms. The best performing runs reach losses as low as −23.92
with sensitivity curves that outperform the simplified aLIGO sensitivity curve over the
entire frequency range. Fig. 4.5 B) and C) show the loss curves and resulting sensitivity
curves of the five best performing optimizations. Again, the optimizations result in
similar sensitivity curves while having different parameter distributions, indicating that
there is no unique way to minimize the sensitivity curve.

This experiment demonstrates that Differometor supports optimizations with constraints
on the light field power which is a crucial requirement for large scale discovery optimiz-
ations.
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Figure 4.5: A) Best losses of all optimization runs. The red dashed line marks the loss of the
simplified aLIGO setup from code block 3.5 that is used as a baseline. B) Smoothed loss curves
of the five best performing optimizations. Loss curves have been shifted into the positive range
by subtracting the smallest loss. C) Resulting sensitivity curves calculated from setups with
the optimized parameters and the initial sensitivity curve from the simplified aLIGO setup from
code block 3.5.

4.3 Towards an Automated Search for new Gravitational
Wave Detectors

To demonstrate the scalability of Differometor to larger scale optimizations as done
by Krenn et al. [7] for the digital discovery of new gravitational wave detectors, we
implement the quasi-universal interferometer (UIFO) from Fig. 2.11 in Differometor and
again run sensitivity optimizations of randomly initialized setups.

Specifically, we initialize UIFO setups of the sizes n = 1 to n = 5 where the resulting
UIFO consists of a grid of n× n cells with either beam splitter or Faraday isolator. The
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grid is surrounded by edge cells with either lasers, squeezers or detectors. Each UIFO
is randomly initialized, meaning that components and orientations are chosen randomly.
We then select all reflectivities, tunings, squeezing magnitudes, angles, powers, masses,
lengths and phases as optimized parameters. Similar to the optimizations in sections 4.1
and 4.2, we calculate the loss for 1000 versions of each UIFO (100 versions for UIFOs
of size 5 because of computational constraints), where the optimized parameters of each
version are uniformly distributed between −10 and 10, get mapped to the range between
0 and 1 by applying a sigmoid function and then get scaled to their respective parameter
ranges from table 4.1. We take the UIFO version with the best initial loss and optimize
the parameters to minimize the loss from equation 2.83 with the same coefficients as in
section 4.2. We again use the Adam optimizer [136] from Optax [133] with learning rate
0.1 or 0.01 and gradient clipping with maximum global norm 1.0 [134]. We don’t use any
learning rate scheduler and calculate the sensitivities on a frequency range from 20 Hz
to 5000 Hz at 50 logarithmically-spaced values (35 values for UIFOs of size 5 because of
computational constraints). We run optimizations until a maximum of 20.000 iterations
or until there is no improvement in the loss over 5000 iterations.

Table 4.3 shows the number ranges of optimized parameters for each UIFO size. The
exact number of parameters depends on the randomly initialized setup and can differ
slightly. UIFOs of size 6 result in out of memory errors and therefore represent the cur-
rent limit of Differometor optimizations when calculating the sensitivity at 50 frequency
values. This can be further improved in future Differometor versions by e.g. switching
to a sparse matrix representation.

UIFO Size Number of optimized parameters
1 48 - 51
2 148 - 160
3 296 - 323
4 492 - 537
5 742 - 805

Table 4.3: Number ranges of optimized parameters for UIFOs of different sizes. The exact number
of optimized parameters depends on the randomly initialized UIFO setup.

Fig. 4.6 A) shows the resulting best losses for all optimization runs at different UIFO
sizes. No optimization of UIFOs of size 1 crossed the loss of the simplified aLIGO setup
from code block 3.5. This is expected, as randomly initialized UIFOs of size 1 are mostly
not capable of encoding the simplified aLIGO setup. For UIFOs of larger sizes, the best
losses continually decrease below the simplified aLIGO baseline. Fig. 4.6 C) shows the
strain sensitivity curve from the best performing optimization of UIFO size 4, which
stopped after around 9 hours.
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Figure 4.6: A) Best losses of all optimization runs at different UIFO sizes. The red dashed line
marks the loss of the simplified aLIGO setup from code block 3.5 that is used as a baseline.
B) Gradient evaluation timings (convergence time divided by the number of iterations) for op-
timizations with different UIFO sizes. C) The resulting strain sensitivity curve from the best
performing optimization with UIFO size 4.

We again measure the average time to evaluate one gradient which we define as the
convergence time divided by the number of iterations. Fig. 4.6 B) shows the results of
this timing experiment.

The gradient evaluation time for Differometor and Adam passes 0.5 s at around 302
parameters, a value that Finesse and BFGS in Fig. 4.3 already reached at only 12
optimized parameters. However, the gradient evaluation time still strongly increases
with the number of optimized parameters. Given that the interferometer matrix updates
are the current computational bottleneck of Differometor, implementing a sparsification
of the interferometer matrix again seems like a promising measure to improve this scaling
behavior in future Differometor versions.
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These results demonstrate the promising potential of future Differometor versions to take
a key role in larger scale optimizations for the digital discovery of new gravitational wave
detectors.
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Conclusions and Outlook

Differometor is a new differentiable frequency domain interferometer simulator, specific-
ally designed for large-scale digital exploration of new superior quantum-enhanced hard-
ware for fundamental physics research. The Differometor implementation closely follows
the existing interferometer simulator Finesse and offers carrier and signal propagation,
quantum noise calculation and optomechanical effects as a large subset of the features of
Finesse. The choice of the JAX library provides significant advantages through GPU
execution, just-in-time compilation and automatic differentiation, but also entails addi-
tional programming constraints like the restriction to pure functions and static inputs.
Thus, Differometor adapts the Finesse implementation towards functional and differ-
entiable programming patterns by splitting all physics principles into single functions
whose values are then distributed to the interferometer matrices via different indexing
arrays.

Differometor is verified through comparison with Finesse simulations, demonstrating
good agreement of the calculated sensitivity curves with small discrepancies solely arising
from differences in numerical accuracy. First performance tests show that Differometor
simulations on GPUs outperform Finesse simulations in terms of computation speed,
demonstrating that Differometor makes good use of JAX parallelization and compilation
features.

The promising potential of using Differometor for large-scale digital discovery of new
gravitational wave detectors is demonstrated through different toy optimizations with a
simplified version of the aLIGO detector. The experiments show that Differometor in
combination with the Adam optimizer outperforms Finesse used with BFGS in terms of
convergence, gradient computation and convergence time, confirming that Differometor
makes good use of JAX auto-differentiation features. The experiments further show that
Differometor supports the formulation of additional constraints on the light fields within
an optical setup which are necessary to enforce the feasibility of physical realization of
optimized setups. Differometor optimizations are scalable to setups with hundreds of op-
timized parameters which is well suited for state-of-the-art digital discovery tasks.
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Upcoming technical development plans include:

• Sparsification of interferometer matrices which is expected to further improve the
performance and scalability,

• Improved handling of carrier, signal and sideband systems, which will enable Differ-
ometor to dynamically choose which systems are necessary for a specific simulation
request,

• Several improvements in usability so that Differometor closely matches Finesse in
terms of setup definition and experienced users can easily switch without having
to learn new standards,

• Implementation of several optimization features like coupling different parameters
(e.g. lengths of parallel spaces in an UIFO) to the same optimized parameter or
deploying ML-surrogates for setup initialization,

• Implementing new physics features to extend Differometor beyond the plane-wave
approximation to new light field representations such as Gaussian beams which
unlock the simulation of spatial effects through higher order modes.

Differometor is envisaged as a modular simulator that can be combined with simulators
from other fields of physics like quantum optics or super-resolution microscopy to perform
digital discovery on a search space that potentially includes novel fundamental physics
experiments which lay outside of human reach through intuition and experience. Thus,
Differometor is a step into the direction of AI for scientific understanding and can serve
as a computational microscope and as a resource of inspiration for humans to come up
with new ways to observe and better understand the universe.
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Simplified aLIGO

No. Component Type Parameter Optimized
1 sq1 Squeezer db Yes
2 sq1 Squeezer angle Yes
3 L0 Laser power Yes
4 L0 Laser phase Yes
5 sq1_srm Space length Yes
6 bs_srm Space length Yes
7 prm_bs Space length Yes
8 bs_itmx Space length Yes
9 bs_itmy Space length Yes
10 L0_prm Space length Yes
11 itmx_etmx Space length Yes
12 itmy_etmy Space length Yes
13 itmxsus Free Mass mass Yes
14 itmysus Free Mass mass Yes
15 etmxsus Free Mass mass Yes
16 etmysus Free Mass mass Yes
17 bs Beamsplitter reflectivity Yes
18 bs Beamsplitter tuning Yes
19 bs Beamsplitter alpha Yes
20 prm Mirror reflectivity Yes
21 prm Mirror tuning Yes
22 srm Mirror reflectivity Yes
23 srm Mirror tuning Yes
24 itmx Mirror reflectivity Yes
25 itmx Mirror tuning Yes
26 itmy Mirror reflectivity Yes
27 itmy Mirror tuning Yes
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No. Component Type Parameter Optimized
28 etmx Mirror reflectivity Yes
29 etmx Mirror tuning Yes
30 etmy Mirror reflectivity Yes
31 etmy Mirror tuning Yes
32 sq1_srm Space refractive_index No
33 bs_srm Space refractive_index No
34 prm_bs Space refractive_index No
35 bs_itmx Space refractive_index No
36 bs_itmy Space refractive_index No
37 L0_prm Space refractive_index No
38 itmx_etmx Space refractive_index No
39 itmy_etmy Space refractive_index No
40 bs Beamsplitter loss No
41 prm Mirror loss No
42 srm Mirror loss No
43 itmx Mirror loss No
44 itmy Mirror loss No
45 etmx Mirror loss No
46 etmy Mirror loss No

Table A.1: Parameters of the simplified aLIGO setup from Fig. 2.3 and code block 3.5.
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